

lecomal®

PROGRAMMABLE CONTROLLERS

COUNTER MODULES TC700

COUNTER MODULES TC700

3rd Edition - January 2005

TABLE OF CONTENTS

1.	INT	RODUCTION	5
2.	ME	CHANICAL DESIGN	6
	2.1.	Connectors - features	6
	2.2.	Connectors - encoding	
3.	DE	QUIREMENTS FOR FEEDING OF MODULES	٥
J.	3.1	Feeding of input and output circuits of PLC	
	3.1.1	Power sources PS-25/24, PS-50/24 and PS-100/24	
	3.2	Preventative protection against interference	
	3.2.1	Using the interference suppressor set.	
4.		UNTER MODULE IC-7702	
	4.1	Basic parameters	
	4.2	Operational conditions	
	4.3	Electrical parameters	
	4.4	Power supply	
	4.5	Connection	
	4.6	Operation	
	4.6.1	Module HW configuration	
	4.6.2	Putting in operation	
	4.7	Diagnostics	
	4.8	Indication.	
	4.9	Module setup	
	4.9.1	Incremental encoder with 5 inputs	
	4.9.2	Incremental encoder with 3 inputs	
	4.9.3	Pulses and direction with 5 or 3 inputs	
	4.9.4	Up and Down with 5 or 3 inputs	
	4.9.5	Timer	
	4.9.6	Conditionally switched counter	
	4.9.7	Period measurement.	
	4.10	Program-selectable modes of function of outputs for counter 0 and 2:	
	4.10.1 4.10.2	Manual control of outputs through bits DO0, DO1	
	4.10.2	9	
	4.10.4		
	4.10.6 4.10.7		20 25
	4.10.7	Moving to reference by two speeds Scratchpad memory data structure	
	4.11	Programming in mnemocode	
	4.12	Programming according to IEC 61 131- 3	2V
	4.13		34 21
	4.13.1		
	+. IJ.Z	Example of function block in structured text language of according to IEC 01 131-	554

4.13.3 Configuration in structured text language ST according to IEC 61 131- 3	37
4.14 Appendix for advanced users	
4.14.1 Interrupt	
4.14.2 Initialization data structure	
4.15 Module connection examples	42

History of editions

Edition	Date	Description
1.	May 2004	1 st version
2.	June 2004	The items OUT0 and OUT1 in the data structure Cont were renamed to DO0 and DO1 to correspond with Mosaic development environment version 1.4.1 and higher.
3.	January 2005	Adaptation needed for Mosaic Help performed

1.INTRODUCTION

Counter modules (Table 1.1) serve for interconnection of pulse signals from different sources or signals from incremental encoders from an object being controlled to a programmable logic controller TECOMAT (PLC). The modules ensure the conversion of the input level to the level of internal logic signals of the PLC and filtering off of faults and vice versa, conversion of logic signals of the PLC to output digital signals.

The information on module type and their basic parameters can be found on the front plate and module sides. The assignment of signals on the terminals of the module connectors is illustrated on the inside of the door. The module in the PLC are unequivocally identified by its position in the rack and by the rack address. Counter modules can be fitted at any arbitrary position of both the main and expansion racks.

Table 1.1 List of modules with order numbers

Module	Modification	Order
type		number
IC-7702	2 counters with 5 inputs, or 4 counters with 3 inputs (24 V DC)	TXN 177 02

2. MECHANICAL DESIGN

Each module has a plastic protective case 30 mm wide. After opening the door you can access the connectors for signal connection. At the bottom of the unit there is a hole for cables connected to the technology being controlled.

The modules are fitted with connectors. The removable connectors have screw-type or screwless (spring) terminals. Taking out of each connector is facilitated by means of locking levers. By moving the locking lever round a slight amount, the terminal becomes loose. When fitting the connector on, the locking lever has to be moved round a slight amount in reverse direction and, for connectors, the locking levers serve also to secure the connector against disconnecting. The connector for connection of the input and output signals with 20 terminals is delivered separately (it is not part of the module delivery). The following variants are available:

- with spring terminals TXN 102 30 (mounting in the line of the conductor)
- with screw terminals TXN 102 31 (screw in the line of the conductor)
- with screw terminals TXN 102 32 (screw perpendicularly to the conductor)

The connectors are described in the documentation TXV 102 30 or in the Manual for designing of systems TECOMAT and TECOREG TXV 001 08.01.

2.1. Connectors - features

		Order number of connector set			
		TXN 102 30	TXN 102 31	TXN 102 32	
No. of connectors in s	set	1	1	1	
No. of connector term	ninals	1x20	1x20	1x20	
Terminal spacing	mm	5,08	5,08	5,08	
Type of terminal		screwless (spring)	screw-type, straight	screw-type, perpendicular	
Length of stripping of conductor	mm	10	13	7	
Conductor dimension	ons				
Clamping range	mm ²	0.08 ÷ 2.5	0.08 ÷ 1.5	0.08 ÷ 2.5	
Wire ¹⁾	mm ²	0.5 ÷ 2.5	0.5 ÷ 1.5	0.5 ÷ 2.5	
Cable ²⁾	mm ²	0.5 ÷ 2.5	0.5 ÷ 1.5	0.5 ÷ 2.5	
Cable with female header ³⁾	mm²	0.5 ÷ 2.5	0.5 ÷ 1.5	0.5 ÷ 2.5	
Cable with female header with plastic mm ² collar ⁴⁾		0.5 ÷ 1.5	0.5 ÷ 1.5	0.5 ÷ 1.5	
Electrical parameter	Electrical parameters				
Nominal voltage	V	250	250	250	
Nominal current	Α	10	10	9	

Table 2.1 Connector parameters

¹⁾ Wire, e.g. harmonized type H05(07) V-U

²⁾ Cable, e.g. harmonized type H05(07) V-K

³⁾ Cable, with copper cable female header according to DIN 46228/1

⁴⁾ Cable, with cable female header with plastic collar according to DIN 46228/4

The connectors are ordered separately and are ready for mechanical encoding. For each module type, a different code is used, so that it is ensured that the user does not interchange the cables by mistake with another connections and does not possibly destroy the module by a higher voltage.

Encoding is carried out by means of plastic pins into the connector (according to the instructions for use, which are part of each connector set). The modules are supplied with male connectors already encoded according to Fig. 2.1.

Fixation of the module on the rack is easy and done by means of a screw located at the top part of the case.

When fixing the module on the rack, the module has to be put with its two lugs at the rear bottom part of the case into the holes at the bottom edge of the metal frame in required position and by swinging movement press the module down onto the connector of the bus and secure it by the screw located at the top side of the case. When you want to take the module out off the rack, loose the screw at the top part of the case and by swinging movement towards you and down, tilt the module from the rack and take it carefully out of the rack.

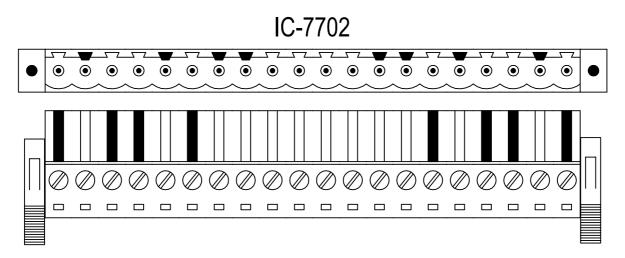

ATTENTION! The modules contain parts sensitive to static charge, therefore, it is necessary to follow the safety rules when working with these circuits! Any handling must be done on the module taken out from the rack!

Table 2.2 Module dimensions and weight

Dimensions - height	198 mm
- width	30 mm
- depth	137 mm
Weight	0.3 to 0.4 kg (acc. to type)

2.2. Connectors - encoding

The connectors are supplied without encoding, the encoding elements are part of the packaging of each connector. The connectors can get a code to avoid the connector to be plugged in another type of connector. The male connector in the module has already a code from the manufacturer, its counterpart (connector) is encoded by the customer. The code of each module is given in the basic documentation supplied with the module (the position of the coding element is illustrated by a black rectangle on the figure).

Fig. 2.1 Encoding of connectors of modules IC-7702 (view of the male connectors from the pins, i.e. from the door side)

The encoding elements supplied with the connector are designed to be pushed in the grooves in the connector (see Fig. 2.2).

Encoding procedure:

The encoding element is pushed in the direction of arrows \lt **BL** > into the groove of the connector (the elements are different for connectors TXN 102 3x and for connectors TXN 102 40 – two-line elements with raster 3.5 mm). After pushing in the stop position, the rest of the element is broken off (see Fig. 2.2). The same procedure is used for the second side of the encoding element.

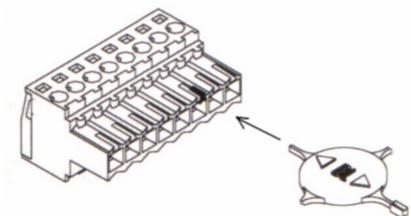


Fig. 2.2 Plugging in of the encoding element into connector body

ATTENTION! Taking out or pushing in of the connector from / to the module has to be carried out with power supplies of the circuits being controlled switched OFF! The contacts are not designed to extinct possible electric arcs, the contacts might burn off!

3. REQUIREMENTS FOR FEEDING OF MODULES

The internal circuits of the module are fed from a power source that is part of the TC700 system assembly and the power source is led through the PLC rack.

3.1 Feeding of input and output circuits of PLC

The direct input and output circuits are fed from a direct voltage source (e.g. PS series power supplies). No other appliances must be connected to the source that could cause the increase of interference or overvoltage level. A permissible tolerance of direct supply voltage including ripple effect for the input and output circuit is 20 per cent from the voltage nominal value. Detailed information can be found in the Manual for designing of systems TECOMAT and TECOREG TXV 001 08.01.

3.1.1 Power sources PS-25/24, PS-50/24 and PS-100/24

For feeding of 24 V circuits, power sources PS-25/24 (order nr. TXN 070 22), PS-50/24 (order nr. TXN 070 10) or PS-100/24 (order nr. TXN 070 15) can be employed, which serve for feeding of direct current circuits 24 V with the input power of 25 W, 50 W or 100 W, respectively. The power sources are fed from the 230 V AC network. The sources are designed to be installed on the bar.

Module type	Nominal voltage	Output loss for 1 input
IC-7702	24 V DC	0.12 W

Table 3.1 Output loss on one input

Table 3.2 Output loss on one output

Module type	Nominal voltage	Output current	Output loss for 1 output
IC-7702	24 V DC	2 A	1.2 W

3.2 **Preventative protection against interference**

To reduce the level of interference in the distributing frame with the installed PLC, all the inductive loads have to be treated with interference suppressor devices. For this purpose, interference suppressor sets are delivered (Table 3.3, Table 3.4).

3.2.1 Using the interference suppressor set

The interference suppressor set serves for protecting of the digital direct as well as alternating output units of the PLC against voltage peaks that occur especially when controlling inductive load. Though some units have this protection on the board, we recommend to do this protection straight on the load. This is due to maximum avoidance of interference spreading as a source of possible faults.

As protective element we deliver varistors or RC-elements, the highest efficiency can be reached by combination of both protection types. The set can be used anywhere in controlled technologies to protect contacts or against interferences arising during control processes.

Interference elimination unit content	For load	Unit order number		
8x varistor 24 V	24 V DC/AC	TXF 680 00		
8x varistor 48 V	48 V DC/AC	TXF 680 01		
8x varistor 115 V	115 V AC	TXF 680 02		
8x varistor 230 V	230 V AC	TXF 680 03		
8x RC element - R = 10Ω , C = 0.47μ F	24 - 48 V DC/AC	TXF 680 04		
8x RC element - R = 47Ω , C = 0.1μ F	115 - 230 V AC	TXF 680 05		
Table 3.4 Parameters of varistors used in interference suppressor sets				
Energy that can be captured by the varies	stor l ² t	< 80 J		

Energy that can be captured by the varistor I ² t	< 80 J
(t is for duration of the blanking pulse - in ms)	
Current through varistor I	< 25 A
Mean value of output power loss P	< 0.6 W

Protection element connection

An example of connection is given on Fig. 3.1. The principles of interference suppression in the position of its source as close as possible have to be taken in account.

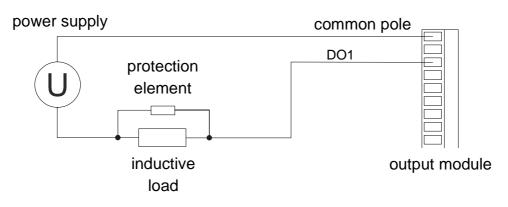


Fig. 3.1 Protective element connection parallel to the load

Further information on interference elimination can be found in the Manual for designing of systems TECOMAT and TECOREG TXV 001 08.01, section 7.3.

4. COUNTER MODULE IC-7702

The IC-7702 module can have optionally 2 counters of 32 bits with 5 inputs, or 4 counters of 32 bits with 3 inputs, for connection of pulse signals or signals from incremental encoders. Further optional function are timers, conditionally switched counters and optionally the signal period measurement function. The input signals are bipolar with levels of 24 V DC with minus or plus common terminal, direct outputs with quick response, for levels of 24 V DC, 2 A with plus common terminal. The outputs are realized by semiconducting switches equipped with overcurrent and thermal protection. The equipment of these protections is part of the module diagnostics. The function of the outputs allow controlling of two-status drives for the purpose of setting of the position of movement axes of machinery also with a possibility of slowdown points, optionally also outputs in time functions. The setup and reading of values are carried out from the user program.

4.1 Basic parameters

Product standard	IEC EN 61131-2
Protection class of electrical object ČSN 33 0600	111
Connection	Removable connector, max. 2.5 mm ² conductor per terminal
Type of equipment	built-in
Coverage (after installation into rack)	IP20 IEC EN 60529
Dimensions	137 x 30 x 198 mm

4.2 **Operational conditions**

Class of ambient influence – ČSN 33 2000-3	Normal
Operating temperatures range	0 °C to + 55 °C
Permissible temperatures during transport	-25 °C to +70 °C
Relative humidity	10 % to 95 % without condensation
Atmospheric pressure	min. 70 kPa (< 3000 above see level)
Degree of pollution - IEC EN 61131-2	2
Overvoltage category of installation - ČSN 33 0420)-1 II
Working position	Vertical
Type of operation	Continuous
Electromagnetic c	ompatibility
Emissions - IEC EN 55022*	Class A
Immunity	Table 16, IEC EN 61131-2
Vibration resistance (sinusoidal vibrations)	10 Hz to 57 Hz amplitude 0.075 mm,
Fc according to IEC EN 60068-2-6	57 Hz to 150 Hz acceleration 1G

* This is a product of Class A. In indoor conditions (i.e. such conditions, where using of radio and TV sets can be supposed in a distance of 10 m from the mentioned equipment), the product can cause radio disturbances. It might be required in such cases that the user takes necessary measures to avoid this.

4.3 Electrical parameters

Number of inputs	10 (in two groups)				
Number of inputs in group	5				
Galvanic isolation from internal circuits		Yes, groups a	and mutually		
Diagnostics	Yes, signalization of energized input on module panel				
Type of inputs		Тур	e 1		
Common pole	Minus	Plus			
Input voltage for log. 0 (UL)	Max.	5 V DC	- 5 V DC		
	Min.	- 5 V DC	5 V DC		
Input voltage for log. 1 (UH)	Min.	15 V DC	-15 V DC		
	Тур.	24 V DC	-24 V DC		
	Max.	30 V DC	-30 V DC		
Output current at log. 1	Тур.	5 mA			
Frequency of symmetrical signal (e.g. V, G)	Max.	100 kHz			
Width of isolated pulse on input (e.g. NI)	Min.	5 μ	IS		
Optional filtering of input signals		no filter; 0.18 ms	; 1.5 ms; 12 ms		

Number of outputs	4			
Number of outputs in group	2			
Galvanic isolation from internal circuits	Yes			
Diagnostics		Yes,		
		signalization of closed output on		
		the module panel, signalization of		
		output protection equipment in		
		module status		
Common pole		Plus		
Type of outputs	Semiconducting switch,			
		overcurrent and thermal		
		protection		
Switching voltage	Max.	30 V DC		
	Тур.	24 V DC		
	Min.	9.6 V DC		
Switching current	Max.	1 A (2 A only for one output)		
	Min.	2.5 mA		
Common pole current	Max.	4 A		
Leakage current (log. 0)	Тур.	300 μA		
Switch on period of output	Тур.	100 µs		
Switch off period of output	Тур.	100 μs		
Limit values for switching load:	1			
- for resistance load	Max.	2 A at 24 V DC		
- for inductive load DC13	Max.	2 A at 24 V DC		
Voltage drop at max. load on closed output	Max.	0.6 V		
Switching rate without load	Max.	2.5 kHz		
Switching rate with nominal load	Max.	2.5 kHz		
Polarity inversion protection ¹⁾		Yes		

Short-circuit protection		Internal
- limitation of initial peak current	Тур.	7.5 A
- disconnecting period of initial peak current	Тур.	4 ms
- limitation of short-circuit current	Тур.	6.5 A
Overload protection		Yes
- current limitation	Тур.	6.5 A
Inductive load treatment		External
		RC element, varistor, diode
External supply voltage of module output circuits	6	24 V DC
Max. consumption from external source (modu circuits)	ule internal	30 mA

¹⁾ The circuit will be put in inactive status, the loads will be closed and the current will flow through the protection diode of the circuit.

Insulation voltage among inputs and internal circui	500 V DC	
Insulation voltage among groups of inputs among	500 V DC	
Module output loss	Max.	4 W
Module input power taken from system source	Max.	1 W

4.4 Power supply

The internal circuits of the module are fed from a power supply source, which is part of the TC700 system assembly and the power supply is led through the PLC rack.

4.5 Connection

The module is fitted with a connector (order number of the connector TXN 102 30, ..31, ..32, acc. to customer's specification). The connection of the connector is on Fig. 4.1. Detailed information on connection, proper installation procedure, examples of module connection and principles for increasing resistance and reliability can be found in the Handbook for designing TXV 001 08.01.

Input configuration	DI14, DI24	DI13, DI23	DI12, DI22	DI11, DI21	DI10, DI20
IRC (5)	REF	NI	MD	G	V
IRC (3)	-	-	MD	G	V
DIR(5)	REF	NI	MD	Dir	Pulz
DIR(3)	-	-	MD	Dir	Pulz
UP/DN(5)	REF	NI	MD	Dn	Up
UP/DN(3)	-	-	MD	Dn	Up
CNT	-	-	-	En	Clk
ТІМ	-	-	-	Tim	-

Table 4.1 Meanings of outputs of counters 0 and 2 of module IC-7702

Table 4.2 Meanings of counters of outputs 1 and 3 of module IC-7702								
Input configuration	DI14, DI24	DI13, DI23	DI12, DI22					
IRC	G	V	MD					
DIR	Dir	Pulz	MD					
UP/DN	Dn	Up	MD					
PER	Per	-	MD					

Θ_1	DIxy	Terminal of digital input y (from group x).
Θ^2	COMx	Common pole of group x of input circuits of the module
	UDO	Common pole of output circuits of the module (+ 24 V DC)
	СОМ	Common pole of output circuits of the module
⊖ 9 ⊖10	DOxy	Output terminal of output y (from group x)
 ● 11 ● 12 ● 13 ● 14 ● 15 ● 16 ● 17 ● 18 	Note: Ide module	ntically marked terminals are interconnected inside the

Fig. 4.1 Terminal connection of module IC-7702

4.6 Operation

DI10 DI11 DI12

DI13 DI14 COM1 DI20 DI21 DI22 DI22 DI23 DI24

<u>COM2</u> <u>COM2</u> <u>UDO</u> <u>DO10</u> <u>DO11</u> <u>DO20</u> <u>DO21</u> <u>COM</u>

4.6.1 Module HW configuration

The module is operated, set and diagnosed from the MOSAIC development environment.

4.6.2 Putting in operation

20

After putting the module into the rack and switching power supply on, the module is fully ready for operation and does not require any other settings of its elements.

4.7 Diagnostics

The basic diagnostic system of the module is part of the standard module software. The diagnostic system becomes active after module power supply is on, and works independently from the user.

4.8 Indication

On the front panel of the module each input digital signal is assigned one green indication LED. If this LED is on, it indicates the presence of the input signal on the corresponding terminal. Further, there are a green RUN LED, a red ERR LED and a yellow OFF LED on the front panel. If the RUN LED is on, the module is in the HALT mode, if the RUN LED is flashing, the module is in the RUN mode and communicates with the central unit.

If the ERR LED is permanently on, the module is in the error condition, its initialization was not successful, and a service intervention is required. If the ERR LED is flashing, some of the counters indicates a failure of the phase of V and G traces (bit ERRVG in the status). Most likely the incremental sensor will need replacing, or the input frequency of the signals V and G was exceeded. By program, this signalization can be reset by the RES bit in the Cont byte. The OFF LED indicates blocking of the outputs, for example in the HALT mode.

Fig. 4.2 Indication panel of module IC-7702

4.9 Module setup

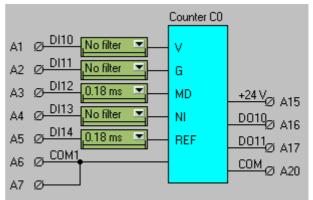
The module is operated, set and diagnosed from the MOSAIC development environment (*Project | Project manager | HW configuration*) | click on the line at the selected position in the column *Module type | Other modules | IC-7702 | OK*, or also the icon S on the line of the module selected).

Madula sattinas IC-7702	Module settings IC-7702
Module settings IC-7702 Counter C0 & Counter C1 Counter C0 Use all 5 pins Incremental encoder Counter C1 Incremental encoder Filtr delay D110 No filter D111 No filter D111 No filter D112 No filter D113 No filter D114 No filter D112 Inverted signal D112 Inverted signal D113 Inverted signal D113 Inverted signal D113 Inverted signal D114 Inverted signal	Module settings IC-7702 Counter C0 & Counter C1 Counter C2 & Counter C3 ✓ Counter C2 Use all 5 pins Incremental encoder ✓ Counter C3 Incremental encoder ✓ D121 No filter D120 No filter D123 No filter D120 No filter Counter C3 D121 No filter A11 Ø D124 No filter A12 Ø Ida A13 Ø COM2 A13 Ø A13 Ø COM2 A13 Ø COM2 A13 Ø A13 Ø A13 Ø COM2 A13 Ø A13 Ø A13 Ø A13 Ø A14 Ø A13 Ø A14 Ø A14 Ø A14 Ø A14 Ø A14 Ø A14 Ø
Module can call interrupt Module can be removed under run	Module can call interrupt Module can be removed under run VOK X Cancel

Fig. 4.3 Examples of dialogue for selection and configuration of counters in the IC-7702 module

Optional configurations of function of inputs of counters 0 and 2:

- incremental encoder (tracks shifted by 90°) with 5 or 3 inputs
- pulses and direction with 5 or 3 inputs
- UP and DOWN with 5 or 3 inputs
- timer
- conditionally switched counter


Optional configurations of function of inputs of counters 1 and 3:

- incremental encoder (tracks shifted by 90°) with 3 inputs
- pulses and direction with 3 inputs
- UP and DOWN with 3 inputs
- period measurement

For individual input signals time filters and polarity can be set.

4.9.1 Incremental encoder with 5 inputs

In installation with high accuracy and reliability of position measurement, incremental encoders are employed (encoders, further as IRC). These can be either rotational or linear ones. Typically, they work on the principle of photoelectric reading of the mutual position of two glass rasters on the rotor and the stator. The output signals, also called track V and G, are oblong symmetrical signals by 90 °C mutually out of phase, so that it

is possible to evaluate the motion direction. The counter module counts each edge of both tracks and if, for example the IRC has a division of 2 500 divisions per a revolution, then the

counter counts 10 000 increments per a revolution. The counters in the module IC-7702 have the range of 32 bits. The track measured is in the range of -2 147 483 648 to +2 147 483 647 increments.

The IRCs are standardly supplied with a division of 100 to 6000 divisions and one null impulse NI per a revolution. Similarly, linear incremental sensors send the NI null impulses in a regular period. The null impulse allows repeated setting so called reference point with the accuracy of one increment, for example the origin of coordinates for a movement axis. For this, so called reference sensor REF is used for a rough marking of the revolution, in which the reference point with the null impulse NI will be declared. To ensure that the clearances in the mechanism, in the gears, etc. are also taken up, it approaches to the NI null impulse always from the same direction and the reference point is the first NI null impulse after setting if the input REF to log "1". An example of this function is on Fig. 4.4.

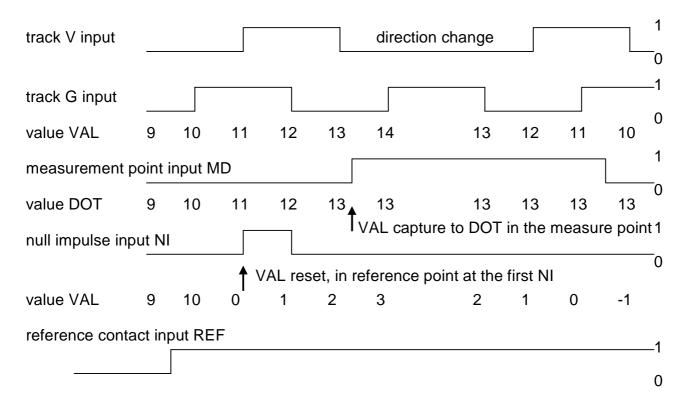
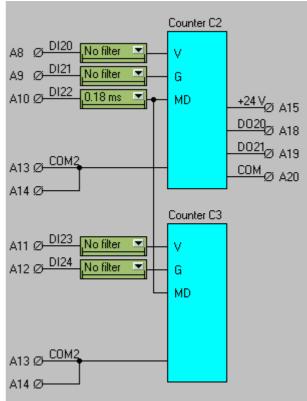


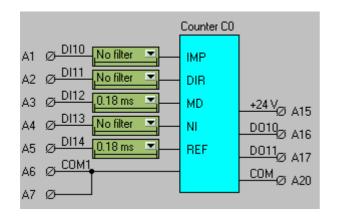
Fig. 4.4 Function on the mode of incremental sensor with 5 inputs

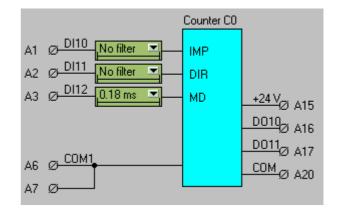
Notes:

- To capture a value given by MD to DOT, bit EMD has to be set to "1" in the Cont byte and for repeating of this function, this bit has to be returned to "0" first. The indication of the activity of MD is through the IMD bit in the Status.
- 2) For the function of referencing, the MODE bits have to be set in the Cont byte. The indication of the reference point setup is through the IREF bit in the Status.


For signals V, G and NI, filtering has to be OFF, the other signals are filtered off as required. It is necessary to follow the maximum dynamic parameters of the input signals during the application. For example, an IRC with the division of 2 500 divisions per a revolution connected by tracks V, G and NI can rotate at a speed of 2 400 rpm at maximum to measure the track. But for capturing of the NI im

pulse, it can rotate at a maximum speed of 1 200 rpm.


100 kHz / 2500 * 60 = 2400 rpm 1/(**5 μs** * 4) / 2500 *60 = 1200 rpm


4.9.2 Incremental encoder with 3 inputs

In the configuration with 3 inputs, the NI and REF inputs are not employed, otherwise the function of the counter is identical. To set the reference point, it is possible to use the MD signal, when we set the EMR bit to "1" in the Cont byte, then with the activation of the MD signal, the current value of the counter will be set to zero. Of course, the accuracy of the setup is significantly lower and depends on the speed of the movement, MD sensor scatter characteristics, its reaction time and input filter setup. Under idle conditions, the zero point can be set up also from the program in the Cont byte, bit RES. In the configuration with 3 inputs, the MD input is common for counters 0 and 1 (2 and 3). If the MD input is used for setting of the counters to zero or for capturing of the current measured position, switching of measurement contacts has to be realized outside the IC-7702 module.

4.9.3 Pulses and direction with 5 or 3 inputs

In the configuration Pulses and direction, the first input gives the change in the value of the counter to the leading edge and the second input determines the direction of counting. The other functions are identical as it is for the IRC configuration.

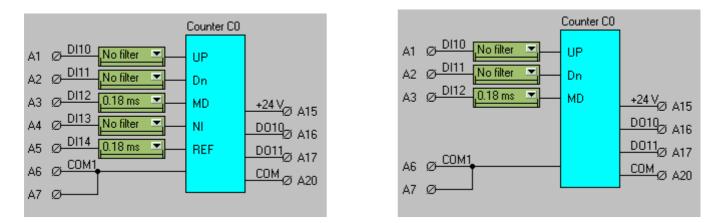

track IMP input						dire		hange				1 0
track DIR input												_1
value VAL	9	10	11	12	13	14	13	12	11	10	9	0
measurement p	oint I	MD inpu	ut									1
value DOT	9	10	11	12	13	13	13	13	13	13	13	-0
null impulse NI	input				I	VAL cap	oture to	DOT i	n the m	easure	e point	: 1
			♦ VA	L reset	t, in r	eference	e point	at the	first NI			0
value VAL	9	10	0	1	2	3	2	1	-1	-2	-3	
reference conta	ct RE	EF inpu	t									1
												0
												0

Fig. 4.5 Function in mode Pulses and direction with 5 inputs

Notes:

- 1) To capture a value given by MD to DOT, bit EMD has to be set to "1" in the Cont byte and for repeating of this function, this bit has to be returned to "0" first. The indication of the activity of MD is through the IMD bit in the Status.
- 2) For the function of referencing, the MODE bits have to be set in the Cont byte. The indication of the reference point setup is through the IREF bit in the Status.

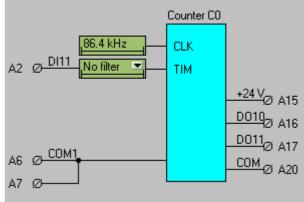
4.9.4 Up and Down with 5 or 3 inputs

In the configuration UP and DOWN, the first input at the leading edge increments the value of the counter and the second input at the leading edge decrements the value of the counter. The other functions are identical as it is for the IRC configuration.

				Count	er mo	dules					
track UP input											1
						cna	ange di				1
track DOWN in	put										
value VAL	9	10	11	12	13	14	13	12	11	10	9
measurement p	oint l	MD inp	ut		Г						1_
value DOT	9	10	11	12	13	13	13	13	13	13	0 13
null impulse NI i	input				T	VAL ca	pture to	DOT	in the r	neasur	e point1
			 ↑ ,	VAL res	set, in r	eferen	ce poin	t at the	first N		0
value VAL	9	10	0	1	2	3	2	1	0	-1	-2
reference conta	act R	EF inp	ut								
	[•									1
											0

Fig. 4.6 Functions in mode UP and DOWN with 5 inputs

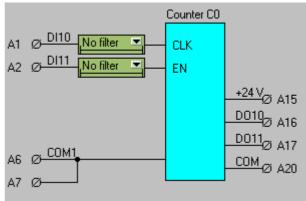
Notes:


- 1) To capture a value given by MD to DOT, bit EMD has to be set to "1" in the Cont byte and for repeating of this function, this bit has to be returned to "0" first. The indication of the activity of MD is through the IMD bit in the Status.
- 2) For the function of referencing, the MODE bits have to be set in the Cont byte. The indication of the reference point setup is through the IREF bit in the Status.

4.9.5 Timer

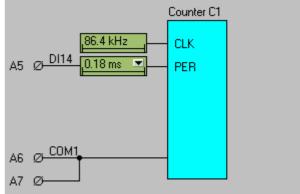
In the configuration of the timer, the counter measures the length of the pulse or allows generating of a pulse. The length of the pulse is measured at input **DI1**. The value **POS1** has to be set to maximum, i.e. +2 147 483 647. The length of the pulses can be in the range from 11.574 ms to 24 855 s. The length is calculated as follows:

T = Val / 86400 [s].


At output **DO0** it is possible to generate the pulse of the length T = POS1 / 86400 [s]. In this case, input **DI1** has to still be "1", since it conditions the

input of the clock pulses to the counter. Output **DO0** is "1", if the value of the counter is **Val** < **POS1**. Output **DO1** is inverted to output **DO0**. The counting is stopped, as long as the value of **Val** reaches the value of **POS1**.

4.9.6 Conditionally switched counter


In the configuration of the conditionally switched counter, it counts the leading edges of the pulses at input **DI0**, if "1" is at input **DI1**. Output **DO0** is "1", if the value of **Val** < **POS1**. Output **DO1** is inverted to output **DO0**. The counting is stopped, as long as the value of **Val** reaches the value of **POS1**.

4.9.7 Period measurement

In the configuration of period measurement, the counter measures the period from the leading edge to the next leading edge at input **DI1**. The measured period of the pulses can range from 11.574 ms to 24 855 s. The period is calculated according to the following formula:

T = Val / 86400 [s].

4.10 **Program-selectable modes of function of outputs for counter 0 and 2:**

- Manual control of outputs through bits DO0, DO1
- Digital mark mode (output switched in an interval of two specified points)
- Positioning by outputs UP and DOWN (DO0 UP, DO1 DOWN)
- Moving to reference by outputs UP and DOWN (DO0 UP, DO1 DOWN)
- UP positioning, with 2 speeds
- (DO0 FAST, DO1 SLOW)
- (DO0 FAST, DO1 SLOW) (DO0 - FAST, DO1 - SLOW)
- DOWN positioning, with 2 speedsMoving to reference with 2 speeds

The functions of outputs behaviour are optional under run from the user program and are incorporated only with counters 0 and 2. The mode of outputs behaviour is controlled by the status of bits MODE0, MODE1 and MODE2 in the Cont byte of the structure of the corresponding counter.

4.10.1 Manual control of outputs through bits DO0, DO1

MODE0 = 0; MODE1 = 0; MODE2 = 0;

In this mode, the status of outputs **DO0** and **DO1** is given by the value of bits **DO0** and **DO1** in the Cont byte.

4.10.2 Digital mark mode

MODE0 = 1; MODE1 = 0; MODE2 = 0;

In this mode, the status of outputs **DO0** and **DO1** is given by comparison of the value of the counter **Val** with values **POS1** and **POS2**. Output **DO0** is closed, if **Val** >= **POS1 and Val** <= **POS2**. Output **DO1** is inverted to output **DO0**.

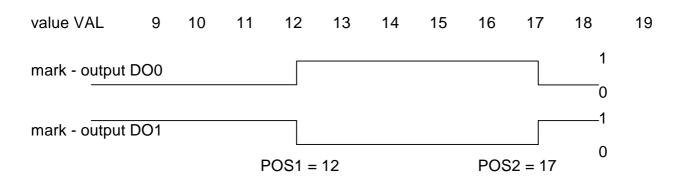
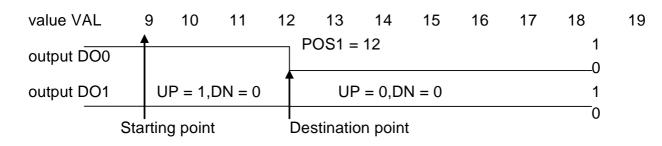
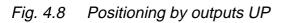


Fig. 4.7 Digital mark mode

4.10.3 Positioning by outputs UP and DOWN


MODE0 = 0; MODE1 = 1; MODE2 = 0;


In this mode, output **DO0** has the function of starting the movement up (**UP**) and output **DO1** has the function of starting the movement down (**DN**). Possible changes of the speed during the movement has to be solved by means of another digital or analog outputs by means of the program. The function of outputs **UP** and **DN** is given by the following expressions:

Output **UP** is on, if **Val < POS1**.

Output **DN** is on, if **Val > POS1**.

After the target value of **POS1** is reached, the **DST** bit in the Status is set to "1" and both outputs are off, until a new different value of **POS1** is written, or the **MODE** is changed.

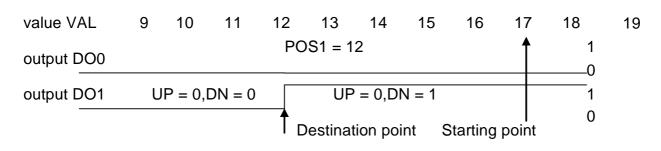


Fig. 4.9 Positioning by outputs DOWN

4.10.4 Moving to reference by outputs Up and Down (UP/DN)

To move to a reference point in the mode UP/DN, the following bits have to be set in Cont of the counter:

MODE0 = 1; MODE1 = 1; MODE2 = 0;

The function is clear from the following figures for the cases, when the start point is above or under the position of the **REF** switch. The **REF** switch has to be always closed from one side of the entire track and always open from the second side, by which the direction for reference searching is determined. If the start point is when the **REF** switch is closed, then the **DN** output closes to move to the position where the **REF** switch will be open. Subsequently the **UP** output closes and the first closing of the **NI** (Null index) signal is searched. If the start point is when the **REF** switch is open, than the **UP** output closes, and after closing of the **REF** switch, the first closing of the **NI** signal is searched. At this point, the content of the counter is reset, by which the origin of coordinates for measuring is set. Searching for **NI** is carried out always from the same direction to eliminate the effect of clearances in the drive to improve the repeatability of the origin setup.

After reaching the **NI** and resetting of the counter, the bit **IREF** in the Status is set to "1". Both outputs will be off, until **MODE** is changed. The **IREF** bit is set to zero by switching on the mode of moving to reference again. Possible changes of the speed during the movement has to be solved by means of another digital or analog outputs by means of the program.

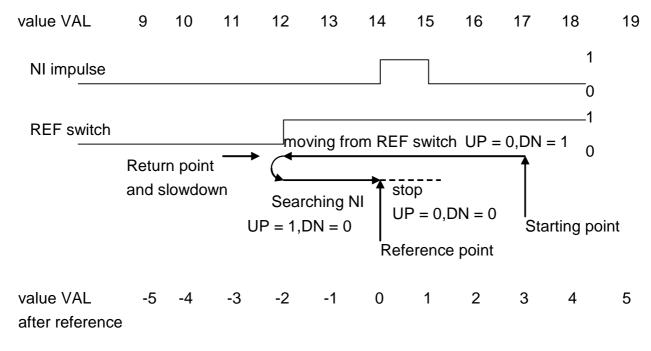


Fig. 4.10 Moving to reference DOWN

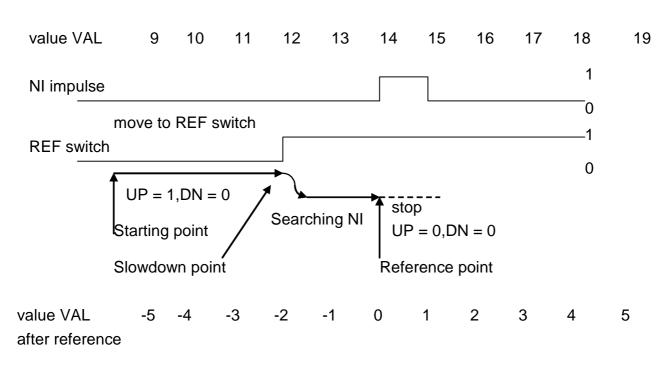


Fig. 4.11 Moving to reference UP

4.10.5 Up positioning with two speeds

MODE0 = 0; MODE1 = 0; MODE2 = 1;

In this mode, output **DO0** has the function to switch on the movement fast (**Fast**) and output **DO1** has the function to switch on the movement slow (**Slow**). The function of outputs **Fast** and **Slow** is given by the following expressions:

Output **Fast** is on, if **Val < POS2**.

Output Slow is on, if $Val \ge POS2$ and Val < POS1.

After reaching of the target value **POS1**, the **DST** bit is set to "1" in the Status and both outputs are off, until a new different value of **POS1** is written, or the **MODE** is changed.

Note: The direction of the movement UP for two-speed control has to be preset from the program by means of common digital outputs.

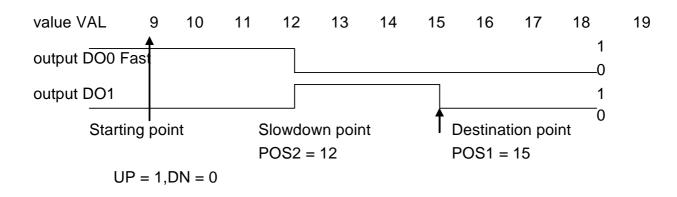


Fig. 4.12 Positioning UP by two speeds

4.10.6 Positioning DOWN by two speeds

MODE0 = 1; MODE1 = 0; MODE2 = 1;

In this mode, output **DO0** has the function to switch on the movement fast (**Fast**) and output **DO1** has the function to switch on the movement slow (**Slow**). The function of outputs **Fast** and **Slow** is given by the following expressions:

Output **Fast** is on, if **Val > POS2**.

Output Slow is on, if $Val \le POS2$ and Val > POS1.

After reaching of the target value **POS1**, the **DST** bit is set to "1" in the Status and both outputs are off, until a new different value of **POS1** is written, or the **MODE** is changed.

Note: The direction of the movement UP for two-speed control has to be preset from the program by means of common digital outputs.

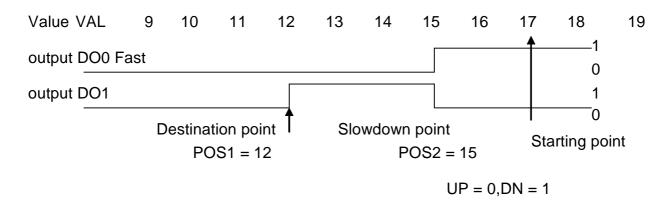
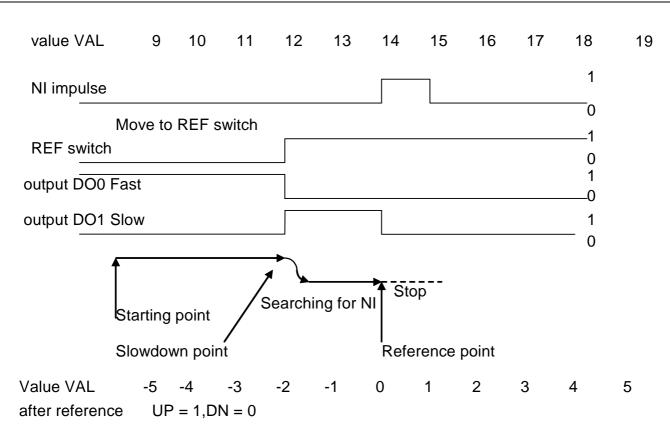


Fig. 4.13 Positioning DOWN by two speeds

4.10.7 Moving to reference by two speeds

MODE0 = 0; MODE1 = 1; MODE2 = 1;


In this mode, output **DO0** has the function to switch on the movement fast (**Fast**) and output **DO1** has the function to switch on the movement slow (**Slow**). The function of outputs **Fast** and **Slow** is given by the following expressions:

Output Fast is on, if REF is "0".

Output **Slow** is on, if **REF** is "1" and **NI** is not "1" yet.

If the start point is when the **REF** switch is closed, than it is necessary to move down by the program from the **REF** switch to open it. After that, it is necessary to set the movement up by the program and to set the mode of the movement to reference by two speeds. If the start point is when the **REF** switch is open, than the output **Fast** closes, after closing of the **REF** switch, the output **Slow** closes and the output **Fast** opens. The first closing of the **NI** (Null index) signal is searched. At this point, the content of the counter is reset, by which the origin of coordinates for measuring is set. Searching for **NI** is carried out always from the same direction to eliminate the effect of clearances in the drive to improve the repeatability of the origin setup.

After reaching the **NI** and resetting of the counter, the bit **IREF** in the Status is set to "1". Both outputs will be off, until **MODE** is changed. The **IREF** bit is set to zero by switching on the mode of moving to reference again.

4.11 Scratchpad memory data structure

The IC-7702 counter module operates 4 counters of the width of 32 bits. Counters 0 and 2 have more functions than counters 1 and 3 and therefore they have a different structure of the data read and written.

The items of the structure of the counter module have assigned symbolic names, , beginning with the rack number and position number in the rack. In the column *Full notation*, concrete symbolic name is specified for the given item. If you want to use the data in the user program, you will use either this symbolic name or you will write your symbolic name in the column *Alias* that can be used later. We do not recommend to use absolute operands, since they can change by adding another modules to the PLC assembly after a new compilation of the user program. The structure of passed data is obvious from the panel *I/O Setting* in the MOSAIC development environment (icon **III**).

4.COUNTER MODULE IC-7702

IEC 💑 💑 💑 DEC	EXP HEX BIN STR	t 🖻				S108 = \$00	Data OK	Run
O RMO								
1 PW-7904 2 CP-7002	4 0S-7401 5 IB-7305	6 binary	7 IB-7303	8 IC-7702	12 IC-77	02		
Data structure	Full notation	Alias	Terminal	Abs./len.	[▲] Value	Fixed	Note	^
∃ CI2 : TIC7702_CIL	r0_p8_Cl2	CALCULATE	Contraction of the second	1		1.4.4.4		
STAT : TICStat_CIL	r0_p8_Cl2~STAT		1		\$0020			
—DIO : BOOL 🗛	r0_p8_Cl2~STAT~DI0		A8	% X40.0	0			L
—DI1 : BOOL 🛛 🚑	r0_p8_Cl2~STAT~Dl1		A9	%X40.1	0			
—DI2 : BOOL 🛛 🚑	. r0_p8_Cl2~STAT~Dl2		A10	% X40.2	0			
—DI3 : BOOL 🛛 🚑	r0_p8_Cl2~STAT~Dl3		A11	% ×40.3	0			
—DI4 : BOOL 🛛 🗛	r0_p8_Cl2~STAT~Dl4		A12	XX40.4	0			
-OVER : BOOL 🍒	r0_p8_Cl2~STAT~OVER			% ×40.5	1			
—DOO : BOOL 🗛	, r0_p8_Cl2~STAT~DOO		A18	% X40.6	0			
—DO1 : BOOL 🗛	r0_p8_Cl2~STAT~D01		A19	% ×40.7	0			
-IMD : BOOL 🍒	r0_p8_Cl2~STAT~IMD			% X41.2	0			
—DST :BOOL 🗛	r0_p8_Cl2~STAT~DST		1	% X41.3	0			
-IREF :BOOL 🛛 🚑	r0_p8_Cl2~STAT~IREF		1	% ×41.4	0			
-IRQMD : BOOL 🍒	r0_p8_Cl2~STAT~IRQMD			% X41.5	0			
-IRQDST : BOOL 🖕	r0_p8_Cl2~STAT~IRQDST			%X41.6	0			
ERRVG : BOOL 🚑	r0_p8_Cl2~STAT~ERRVG			% X41.7	0			
-VAL : DINT 🛛 🚜	, r0_p8_Cl2~VAL			%×L42	0			
DOT : DINT 🍒	r0_p8_Cl2~DOT			%×L46	0			
CO2 : TIC7702_COL	r0_p8_CO2							
G-CONT : TICCont_COL	r0_p8_CO2~CONT		1		\$0000	1		
<								>

Fig. 4.15 Example of structure of input data of counter 2 of the IC-7702 module

In this dialogue, it is possible to monitor the items of the data structures or to fix them at a selected value.

	EXP HEX BIN STR					S108 = \$00	Data OK	Run
O RMO								
1 PW-7904 2 CP-7002	8 IC-7702							
Data structure	Full notation	Alias	Terminal	Abs./len.	■ Value	Fixed	[▲] Note	
∃ CI2 : TIC7702_CIL	r0_p8_Cl2	and the second se	-					
■ STAT : TICStat_CIL	J r0_p8_Cl2~STAT			XX30/2	\$1403			
VAL : DINT	r0_p8_Cl2~VAL			%XL32	1039551			
-DOT : DINT	r0_p8_Cl2~DOT			%XL36	-101			
∃ CO2 : TIC7702_COL	r0_p8_CO2							
CONT : TICCont_COL	r0_p8_CO2~CONT				\$001A			
-PMD : BOOL	🖻 r0_p8_CO2~CONT~PMD			%Y22.0	0			
-EMD : BOOL	🖻 r0_p8_CO2~CONT~EMD			%Y22.1	1			
EMR : BOOL	🖻 r0_p8_CO2~CONT~EMR			%Y22.2	0			
-MMD : BOOL	🖻 r0_p8_CO2~CONT~MMD			%Y22.3	1			
-MDST : BOOL	🖻 r0_p8_CO2~CONT~MDST			%Y22.4	1			
-RES : BOOL	🖻 r0_p8_CO2~CONT~RES		1	%Y22.6	0			
-SET : BOOL	🖻 r0_p8_CO2~CONT~SET		1	%Y22.7	0			
-DOO : BOOL	🖻 r0_p8_CO2~CONT~DO0		A16	%Y23.0	0			
-DO1 : BOOL	🖻 r0_p8_CO2~CONT~DO1		A17	%Y23.1	0			
-MODEO : BOOL	🖻 r0_p8_CO2~CONT~MODE(c		%Y23.4	0			
-MODE1 : BOOL	🖻 r0_p8_CO2~CONT~MODE*	1		%Y23.5	0			
MODE2 : BOOL	🖻 r0_p8_CO2~CONT~MODE:	2		%Y23.6	0			
-SetVAL : DINT	🖻 r0_p8_CO2~SetVAL			%YL24	5000			
-POS1 : DINT	🖻 r0_p8_CO2~POS1			%YL28	100000			
POS2 : DINT	🖻 r0_p8_CO2~POS2			%YL32	0			
∃ CI3 : TIC7702_CIS	ស r0_p8_Cl3			%X40/10	VAL:0			
∃ CO3 : TIC7702_COS	🖻 r0_p8_CO3			%Y36 / 6				
<								>

Fig. 4.16 Example of structure of output data of counter 2 of the IC-7702 module

The data structure of the module is **generated automatically** by Mosaic (according to the setup in the dialogue for selection and configuration of counters) to the file HWconfig.ST and is as follows:

DO1	DOO) OVE	ĒR	DI4	DI3	DI2	DI1	DI0	
.7	.6	.5		.4	.3	.2	.1	.0	
ERRVG	IRQDS	ST IRQI	MD	IREF	DST	IMD	0	0	
.15	.14	.1:	3	.12	.11	.10	.9	.8	
TICStat_CIL : STRUCT				// st	atus of	counter	0 and 2		
DI0		-		status	_				
DI1	:	BOOL;		status	of inp	ut DI1			
DI2	:	BOOL;		status	of inp	ut DI2			
DI3	•	BOOL;		status	_				
DI4	•	BOOL;		status	_				
OVEF		BOOL;		_		-	lizatio	n status	\$
DO0	:	BOOL;		status		-			
D01		BOOL;		status	of out	put DO1			
dumm	-	BOOL;							
dumm	ny9 :	BOOL;							
IMD	:	BOOL;							nent point MD
DST	:	BOOL;		status	of rea	ching th	ne desti	nation d	luring
		;		positi	-				
IREF	?:	BOOL;			_	nt setur			
IRQM	۱D:	BOOL;		reques	t for i	nterrupt	: from M	D	
IRQI	DST :	BOOL;		reques	t for i	nterrupt	: from r	eaching	of destination
ERRV	7G :	BOOL;		error,	consecu	tion of	tracks	from inc	remental counter
END_S1	RUCT;								

STAT - status of counter 0 and 2

STAT - status of counter 1 and 3

STAT - status of counter 1 and 3								
0	0	0	0	0	0	DI4	DI3	
.7	.6	.5	.4	.3	.2	.1	.0	
ERRVG	0	0	0	0	IMD	0	0	
.15	.14	.13	.12	.11	.10	.9	.8	
TICStat DI3 DI4 dum dum dum dum dum dum dum dum dum dum	t_CIS my2 : my3 : my4 : my5 : my6 : my7 : my8 : my9 :	: STRUCT BOOL; BOOL; BOOL; BOOL; BOOL; BOOL; BOOL; BOOL; BOOL; BOOL; BOOL; BOOL; BOOL; BOOL; BOOL;	// // statu // statu	status s of ing s of ing	of count out DI3 out DI4	er 1 and	d 3	ment point MD
ERRY	vg :	BOOL;	// error // count	-	ution o	f tracks	from in	ncremental
END_S	TRUCT;							

CONT – control byte of counter 0 and 2								
SET	RES	0	MDST	MMD	EMR	EMD	PMD	
.7	.6	.5	.4	.3	.2	.1	.0	I
0			MODE0	0	0	DO1	DO0	
.15	.14	.13	.12	.11	.10	.9	.8	
						.0	.0	
TICCo	nt_COL	: STRUCT	. //	control	of coun	ter 0 a	nd 2	
PMD	:	BOOL;	// polar:	ity of i	nput of	measure	ement po	int MD
EMD	:	-	// enabl:	-		of inpu	it of	
		-	// measur	_				
EMR	:				resetting	g from t	he input	t of measurement
MMD		-	// point		runt fr	om innut	of moa	surement point MD
MDS'		-						destination
mbb.	· ·		// during		-		ing or .	
dum	my5 :	BOOL;		L	J			
RES	-	BOOL;	// progra	am reset	ting of	value		
SET	:	BOOL;	// progra	am setur	of valu	le		
DO0						-		nual mode
DO1		-	// requir	red stat	us of ou	itput DC	1 in mai	nual mode
	my10 :							
dum MODI	my11 :						•	
MODI			// mode of // mode of			_		
MOD			// mode (-		
	my15 :		,,,			Juopuob	-	
	TRUCT;							
_								
			inter 1 and					1
SET	RES	0	0	0	EMR	EMD	PMD	
.7	.6	.5	.4	.3	.2	.1	.0	l
0	0	0	0	0	0	0	0	
.15	.14	.13	.12	.11	.10	.9	.8	
TCCon			// contro	al of co		and 2		
PMD			// polar:				ment no	int MD
EMD			_	-	-		_	asur. point MD
EMR				-	_	_		t of measur.
		;	// point	MD				
dummy3 : BOOL;								
	-	BOOL;						
dum	-	BOOL;				_		
RES	-		// progra		-			
SET			// progra	am setur	o of valu	e		
	-	BOOL;						
	my9 : my10 :	BOOL;						
	my11 :							
	my12 :							
	my13 :							
	my14 :							
dum	my15 :	BOOL;						
END_S	IRUCT ;							

```
TIC7702_CIL : STRUCT
   STAT : TICStat_CIL; // status of counter 0 and 2
                     // current value of counter
   VAL : DINT;
   DOT : DINT;
                       // captured value of counter from MD
  END STRUCT;
  TIC7702_COL : STRUCT
   CONT : TICCont COL; // control of counter 0 and 2
   SetVAL : DINT; // set value
                      // value of pos. 1 (destination point, start of mark)
   POS1 : DINT;
   POS2 : DINT;
                     // value of pos. 2 (slowdown point, end of mark)
 END_STRUCT;
  TIC7702_CIS : STRUCT
   STAT : TICStat_CIS; // status of counter 1 and 3
   VAL : DINT;
                     // current value of counter
   DOT : DINT;
                       // captured value of counter from MD
  END_STRUCT;
  TIC7702_COS : STRUCT
   CONT : TICCont_COS; // control of counter 0 and 2
   SetVAL : DINT; // set value
 END STRUCT;
(* IC-7702 *)
                   // definition of variables ( instances )
VAR GLOBAL
 r0_p8_CI0
                     AT %X20 : TIC7702_CIL;
 r0_p8_CO0
                      AT %Y4 : TIC7702_COL;
 r0_p8_CI1
                      AT %X30 : TIC7702 CIS;
 r0 p8 CO1
                      AT %Y18 : TIC7702 COS;
 r0_p8_CI2
                      AT %X40 : TIC7702_CIL;
                      AT %Y24 : TIC7702_COL;
 r0_p8_CO2
 r0_p8_CI3
                     AT %X50 : TIC7702_CIS;
                      AT %Y38 : TIC7702_COS;
 r0_p8_CO3
END_VAR
```

4.12 Programming in mnemocode

When programming in the language of mnemonic code, we proceed according to manuals "PLC Tecomat Programmer's manual" TXV 001 09.02, "Examples of programming - Model 32 bits" TXV 004 04.01, "PLC Instruction set - Model 32 bits" TXV 004 01.02.

The following example demonstrates the use of the IC-7702 module in the function of the positioning module. An incremental counter, a measurement contact MD and a reference sensor are connected to the first counter C0. The outputs from IC-7702 control by means of two values (UP and DOWN) the drive motor, the revolutions are controlled stepwise by digital outputs Fast and Slow (e.g. by module OS-74xx). The module allows finding of a reference point, manual moving by buttons or moving to a position as required by the program.

```
; // global definition of variables
; // in reality buttons SB_ will be from an input module, e.g. IB-7...
#reg bit
    SB_home,
    SB_ManUp,
    SB_ManDn,
    SB_Start,
```

```
SB_Stop,
      SB_Int_EN,
      SB MD EN,
      SB_Set,
      SB_Res,
      IRef,
      Done,
      IMd,
      UP, DN,
      Fast, Slow,
     ERRVG
#reg long
     Pos1,
      Pos2,
      Val,
      Dot,
      SetVal
#reg bit
      memStart,
      memHome , memHome1 , memHome2 , memHome3 , memHome4 , memHome5 ,
      memDone, pomBit
;Example of operation of positioning of axis in mnemonic code
;
P 0
;
  LD
       SB_ManUp
                              ;manual UP
  WR
       r0_p8_CO0~Cont~DO0
  \mathbf{LD}
       SB ManDn
                              ;manual DOWN
  WR
       r0_p8_C00~Cont~D01
;
  \mathbf{LD}
       SB Start
                              ;start of movement
  SET memStart
  LD
       r0_p8_CI0~Stat~DST
  OR
       SB_Stop
                              ;stop
  RES
       memStart
;
  LD
       Pos1
  WR
       r0_p8_CO0~Pos1
                              ;entered destination position of movement
  LD
       Pos2
                              ; offset for movement slowdown
;
  WR
       r0_p8_CO0~Pos2
;
  \mathbf{LD}
       r0_p8_CI0~Stat~IREF
; ANC memHome5
  OR
       SB Stop
  RES
       memHome
  LDC memHome1
  LET memHome3
  LET
       memHome5
                              ;shift by one cycle
  SET
       memHome
                              ;to reference slowly again
       r0 p8 CI0~Stat~DI4
  LD
                              ;REF
  BET
       memHome2
                              ;both edges REF
  OR
       SB Stop
  RES
       memHome1
       SB_Home
                              ;moving to REF point
  LD
```

```
LET
      memHome4
  SET
       memHome1
                             ;fast to reference
;
       r0_p8_CI0~Stat~DST
  \mathbf{LD}
       memDone
  SET
       SB_Start
  LD
  RES
       memDone
;
 \mathbf{LD}
        0
;
       r0_p8_CO0~ContMD_pol; polarity of signal MD(0...direct,1..inverted)
 WR
;
       SB MD EN
  \mathbf{LD}
       r0_p8_CO0~Cont~EMD ;enable capture of MD
  WR
                            ; (0..do not capture, 1... capture)
; LD
        0
       AXX~MD RES
                            ;enable reset from MD (0..do not reset, 1..reset)
; WR
  \mathbf{LD}
       SB Set
  WR
       r0_p8_CO0~Cont~Set ;value setup(0..do not setup,0/1..setup)
  LD
       SB Res
  WR
       r0_p8_CO0~Cont~Res ;counter reset(0..do not reset,0/1..reset)
  \mathbf{LD}
       SetVal
  WR
       r0_p8_CO0~SetVal
                          ;set point
;
  \mathbf{LD}
       SB Int EN
       r0_p8_CO0~Cont~MMD ;enable interrupt from MD(0..disabled,1..enabled)
  WR
  WR
       r0_p8_CO0~Cont~MDST; enable interrupt from destination
                            ;(0..disabled,1..enabled)
;
; IF ( Pos1 - Pos2 > ircIn.Val or Pos1 + Pos2 < ircIn.Val) THEN pomBit:=1;
                              ;destination
  LD
       Pos1
       Pos2
                              ;slowdown point offset
  T.D
  SUB
  \mathbf{LD}
       r0_p8_CI0~Val
  GTS
                              ;destination
  LD
       Pos1
  LD
       Pos2
                              ;slowdown point offset
  ADD
       r0_p8_CI0~Val
  LD
  LTS
  OR
  WR
       pomBit
;
  LD
       memStart
                              ;movement
       pomBit
  AND
       Slow
  RES
  SET Fast
;
       memStart
  LD
                              ;movement
  ANC pomBit
  SET
      Slow
  RES
       Fast
;
       memHome
                             ;to reference slowly again
  LD
                             ;fast to reference
  OR
       memHome1
       r0_p8_CO0~Cont~MODE0
  SET
       r0_p8_CO0~Cont~MODE1
  SET
  RES
       r0_p8_CO0~Cont~MODE2
;
  LD
       memHome
```

```
;to reference
      memHome1
  OR
  AND r0_p8_CI0~Stat~DO0
                         ;up
  AND r0_p8_CI0~Stat~DI4 ;REF
;
  \mathbf{LD}
      memHome1
                          ;fast to reference
  RES Slow
  SET Fast
  LD
      memHome
                          ;to reference slowly again
  SET Slow
  RES Fast
;
  LDC memHome
  ANC memHome1
  AND memStart
                          ;movement
  RES r0_p8_CO0~Cont~MODE0
  SET r0 p8 CO0~Cont~MODE1
  RES r0_p8_CO0~Cont~MODE2
;
  LDC memHome
  ANC memHome1
                          ;manually
  ANC memStart
  RES r0_p8_CO0~Cont~MODE0
  RES r0_p8_CO0~Cont~MODE1
  RES r0_p8_CO0~Cont~MODE2
  RES Slow
  SET Fast
;
  LD
      r0_p8_CI0~Stat~IREF
      IRef
  WR
                          ;reference point was set
  LD
     memDone
                           ;
                          ;movement is finished
  WR
      Done
  \mathbf{LD}
      r0_p8_CI0~Val
  WR
                          ;current position
      Val
  \mathbf{LD}
     r0_p8_CI0~Stat~IMD
                          ;
                          ; indic. of capture of coordinate of meas. point
  WR
      IMd
  LD
      r0_p8_CI0~DOT
                          ;
                          ; position of captured coordinate of meas. point
 WR
      Dot
  \mathbf{LD}
      r0_p8_CI0~Stat~DO0
                          ;
                          ; indication of outputs
  WR
      UP
      r0_p8_CI0~Stat~DO1
  LD
  WR
      DN
                          ; indication of outputs
      r0_p8_CI0~Stat~ERRVG;
  LD
                          ;failure of phase of track V and G
  WR
      ERRVG
;
 _____
;
; for my trials, otherwise it will be OS-7....
  \mathbf{LD}
      Fast
      r0_p8_CO2~Cont~DO0 ; outputs 2 counter as Fast and Slow
  WR
  LD
      Slow
  WR
     r0_p8_CO2~Cont~DO1 ;
E 0
```

4.13 Programming according to IEC 61 131-3

4.13.1 Example of function block in graphical form according to IEC 61 131-3

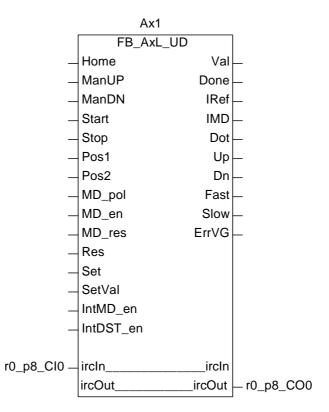


Fig. 4.17 Function block for counter in module IC-7702

4.13.2 Example of function block in structured text language ST according to IEC 61 131-3

When programming in the ST language, we proceed according to manual "Programming of PLC Tecomat in ST language" TXV 003 21. The following example demonstrates the use of the IC-7702 module in the function of the positioning module. An incremental counter, a measurement contact MD and a reference sensor are connected to the first counter C0. The outputs from IC-7702 control by means of two values (UP and DOWN) the drive motor, the revolutions are controlled stepwise by digital outputs Fast and Slow (e.g. by module OS-74xx). The module allows finding of a reference point, manual moving by buttons or moving to a position as required by the program. The example also demonstrates the possibility to use the interrupt from events on module IC-7702.

```
// FB for long counter C0 and C2 of module IC-7702
FUNCTION_BLOCK fb_AxL_UD // in mode Up/Down
  VAR INPUT
           : BOOL; // moving to reference point
    Home
          : BOOL; // manual UP
    ManUp
    ManDn : BOOL; // manual DOWN
    Start : BOOL; // start of movement
           : BOOL; // movement stop
    Stop
           : DINT; // movement target position
    Pos1
    Pos2
           : DINT; // offset for movement slowdown
    MD_pol : BOOL; // polarity of signal of MD (0...direct, 1...inverted)
```

```
MD_EN : BOOL; // enable capture of MD (0..do not capture, 1..capture)
  MD RES : BOOL; // enable reset from MD (0..do not reset, 1..reset)
         : BOOL; // counter reset (0..do not reset, 0/1..reset)
  RES
          : BOOL; // value setup (0..do not setup, 0/1..setup)
   SET
   SetVal : DINT; // set point
   IntMD_EN : BOOL; // enable interrupt from MD (0..disabled, 1..enabled)
   IntDST_EN: BOOL;// enable interrupt from destination(0..disabled,
                  //1..enabled)
END_VAR
 VAR
  memHome : SR; // flip-flop circuit for moving to reference
  memStart: RS; // flip-flop circuit for movement Up/Dn
  memDone : SR;
                   // flip-flop circuit for Done
 END VAR
 VAR OUTPUT
  Val
          : DINT; // current position
           : BOOL; // movement is finished
  Done
   IRef
           : BOOL; // reference point was set
   IMd
           : BOOL; // indication of capture of coordinate of meas. point
           : DINT; // position of captured coordinate of measur. point
  Dot
           : BOOL; // indication of outputs
  UP, DN
  Fast, Slow: BOOL; // outputs to digital module
  ERRVG : BOOL; // indication of error of phase of track V and G
                  //of sensor IRC
 END VAR
 VAR_IN_OUT
   ircIn : TIC7702_CIL;
   ircOut : TIC7702 COL;
 END_VAR
 memHome( S1 := Home, R := ircIn.Stat.IREF or Stop);
memDone( S1 := ircIn.Stat.DST, R := Start );
memStart( S := Start, R1 := ircIn.Stat.DST or Stop );
 ircOut.Cont.MMD := IntMD EN;
                                    // enable interrupt
 ircOut.Cont.MDST := IntDST EN;
 ircOut.Cont.EMD := MD_EN;
 ircOut.Cont.Set := Set;
 ircOut.Cont.Res := Res;
 ircOut.Cont.DO0 := ManUp;
 ircOut.Cont.DO1 := ManDn;
 ircOut.SetVal := SetVal;
 ircOut.Pos1 := Pos1;
IF ( Pos1 - Pos2 > ircIn.Val or Pos1 + Pos2 < ircIn.Val)
                                                         THEN
 Fast:=TRUE; Slow:=FALSE;
ELSE
  Slow:=TRUE; Fast:=FALSE;
END_IF;
IF ( memHome.Q1) THEN
                                  // to reference
   ircOut.Cont.MODE0:=TRUE;ircOut.Cont.MODE1:=TRUE;ircOut.Cont.MODE2:=FALSE;
   IF (ircIn.Stat.DO0 and ircIn.Stat.DI4 ) THEN
    Slow:=TRUE; Fast:=FALSE;
   ELSE
    Fast:=TRUE; Slow:=FALSE;
```

ELSE	.MODE0:=FAL	SE;ircOut.Cont.M // manua	ODE1:=TRUE;ircOut.Cont.MODE2:=FALSE;				
<pre>IRef := irc: Done := memDo Val := ircIn IMd := ircIn Dot := ircIn UP := ircIn DN := ircIn ERRVG:= ircIn END_FUNCTION_BD</pre>	one.Q1; n.Val; n.Stat.IMD; n.DOT; n.Stat.DO0; n.Stat.DO1; n.Stat.ERRV0						
VAR GLOBAL // C	nlobal defin	nition of variabl	les (instances)				
			input module, e.g. IB-7xxx				
SB_home	: BOOL;	SB home2	: BOOL; // inputs				
SB_up	: BOOL;	SB_up2	: BOOL;				
SB_down	: BOOL;	SB_dpz SB_down2	: BOOL;				
SB_start	: BOOL;	SB_start2					
SB_stop	: BOOL;	SB_stop2	: BOOL;				
SB Int EN	-	SB_Int_EN2	-				
SB MD EN	: BOOL;	SB_MD_EN2	: BOOL;				
SB_Set	: BOOL;	SB_Set2	: BOOL;				
SB_Res	: BOOL;	SB_Res2	: BOOL;				
Posl	: DINT;	Pos12	: DINT; // outputs				
Pos2	: DINT;	Pos22	: DINT;				
IRef	: BOOL;	IRef2	: BOOL;				
Done	: BOOL;	Done2	: BOOL;				
Val	: DINT;	Val2	: DINT;				
IMd	: BOOL;	IMd2	: BOOL;				
Dot	: DINT;	Dot2	: DINT;				
SetVal	: DINT;	SetVal2	: DINT;				
UP, DN	: BOOL;	UP2,DN2	: BOOL;				
Fast, Slow	: BOOL;	Fast2, Slow2	: BOOL;				
EFI	: BOOL;	EFI2	: BOOL;				
ERR	: BOOL;	ERR2	: BOOL;				
pomcitac	: int;	pomcitac2	: int; // test variables				
pomcitac3	: int;						
END_VAR							
PROGRAM TestIR	C_UD	// master prog	ram				
	B AVI. IID.	// instance of 1	st counter				
<pre>Ax1 : FB_AxL_UD; // instance of 1st counter Ax2 : FB_AxL_UD; // instance of 2nd counter</pre>							
END_VAR							
Ax1 (Home :: // inputs Start MD_EN	interconne := SB_start := SB_MD_EN	ction-not assign , Stop := SB_stop ,	ManDn := SB_down, ed parameters assume default values p, Posl := Posl, Pos2 := Pos2,				
Res := SB_Res, Set := SB_Set, SetVal := SetVal,							
<pre>IntMD_EN :=SB_Int_EN, IntDST_EN :=SB_Int_EN,</pre>							

```
// outputs interconnection - it is not necessary to use all declared
```

```
Val =>Val, Done =>Done, IRef =>IRef,
        IMd =>IMD, Dot =>DOT,
        UP => UP, DN => DN,
        Fast =>Fast, Slow =>Slow,
        ERRVG =>ERR,
        // variables IN_OUT - interconnection to 1st counter
        ircIn := r0_p8_CI0, ircOut := r0_p8_C00
        );
  Ax2 ( Home := SB_home2, ManUp := SB_up2, ManDn := SB_down2,
     // inputs interconnection-not assigned parameters assume default values
        Start := SB_start2, Stop := SB_stop2, Pos1 := Pos12, Pos2 := Pos22,
        MD_EN := SB_MD_EN2,
        Res := SB_Res2, Set := SB_Set2, SetVal := SetVal2,
        IntMD_EN :=SB_Int_EN2, IntDST_EN :=SB_Int_EN2,
        // outputs interconnection - it is not necessary to use all declared
        Val =>Val2, Done =>Done2, IRef =>IRef2,
        IMd =>IMD2, Dot =>DOT2,
        UP =>UP2, DN =>DN2,
        Fast =>Fast2, Slow =>Slow2,
        ERRVG =>ERR2,
        // variables IN_OUT - interconnection to 2nd counter
        ircIn := r0 p8 CI2, ircOut := r0 p8 CO2
        );
END_PROGRAM
PROGRAM PInteruptIO
                      // program of interrupt operation from peripheries
BEGIN
   IF( r0 p8 CI2.Stat.IRQMD ) THEN pomcitac2 := pomcitac2 + 1; END IF;
   IF( r0 p8 CI2.Stat.IRODST ) THEN pomcitac3 := pomcitac3 + 1; END IF;
END PROGRAM
```

4.13.3 Configuration in structured text language ST according to IEC 61 131-3

For configuration, we will use the IEC configurator, see Fig. 4.18. By right click, we will select adding of instance of the program to the task, for example FreeWheeling(Number := 0), by this, the program is incorporated into the P0 process being executed in cycles. The configurator automatically generates commands to the file *.MCF and compilation can be started by means of the key F9.

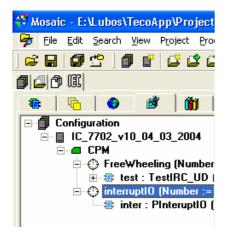


Fig. 4.18 IEC Configurator

```
CONFIGURATION IC_7702_v10_04_03_2004
RESOURCE CPM
TASK FreeWheeling(Number := 0);
TASK InteruptIO(Number := 42);
PROGRAM IntIO WITH InteruptIO : PInteruptIO ();
PROGRAM iTest WITH FreeWheeling : TestIRC_UD ();
END_RESOURCE
END CONFIGURATION
```

4.14 Appendix for advanced users

4.14.1 Interrupt

WARNING: The use of interrupt should be considered only in well-founded cases, if this is necessary! The utility program in P42 has to contain only the essential activities to avoid long runtimes. When a period of approx. 5 ms is exceeded, the system will report error 80 31 pcpc (pcpc is the address of the instruction, on which the error was reported)!

The IC-7702 module can initiate interrupt from the measurement contact **MD** or from reaching of the destination of the movement and so start the **P42** process. The interrupt has to be enabled in the Cont byte of counter 0 or 2 by the corresponding bits.

The central unit interrupts the cyclic execution of the program after it finishes the instruction being just executed, it updates the data from the IC-7702 module and starts executing the program written in the **P42** process. It is necessary to find out at the beginning of this process, which event just happened. The requests for interrupt are tested in the Status of the counter, if they are set to "1".

IRQMD : BOOL; // request for interrupt from MD
IRQDST : BOOL; // request for interrupt from reaching of destination

see the example in chapter 4.8.2 and decides on further activity. After all instructions of the **P42** process are finished, the central unit continues in its normal activity. Further information on interrupt processes can be found in the Programmer's manual TXV 001 09.02.

4.14.2 Initialization data structure

The structures given below are typically automatically generated by the MOSAIC development environment (into file *.hwc) and it is not recommended to alter them. If the programmer does not use automatic configuration generation, the description below serves as a sample for manual module configuration.

The module requires an initialization table, this is represented in the declaration file of the MOSAIC development environment (*.HWC) by the following description:

dule heading structure
dule type identification code
ta exchange status
ta exchange status

#struct								
		Head Head	,					
	USINT	ESTATO,	USINT	EVALO,	USINT	EDOT0,		
	USINT	ESTAT1,	USINT	EVAL1,	USINT	EDOT1,		
	USINT	ESTAT2,	USINT	EVAL2,	USINT	EDOT2,		
	USINT	ESTAT3,	USINT	EVAL3,	USINT	EDOT3,		
	USINT	ECONT0,	USINT	ESETO,	USINT	EPOS10,	USINT	EPOS20,
	USINT	ECONT1,	USINT	eset1,				
	USINT	ECONT2,	USINT	ESET2,	USINT	EPOS12,	USINT	EPOS22,
	USINT	ECONT3,	USINT	ESET3,				
	UINT	CFG,						
	UINT	MODEI,						
	UDINT	FLT						

Example of initialization table declaration :

#table _TTS_IC7702 _r0_p8_Table = 7702,\$01,\$00,

Meaning of the items of the initialization table:

ModulID - module type identification code (order lower, top byte) - 7702

STATD0 - data exchange status

0	0	0	0	0	0	0	INT
.7	.6	.5	.4	.3	.2	.1	.0

INT - 1 - module can initiate interrupt, 0 - module cannot initiate interrupt

STATD1 - data exchange status

0	0	0	0	0	0	0	0
.7	.6	.5	.4	.3	.2	.1	.0

ESTATn, EVALn, EDOTn, ECONTn, ESETn, EPOS1n, EPOS2n - enable of value transmission

EN	0	0	0	0	0	0	0
.7	.6	.5	.4	.3	.2	.1	.0
_	·						

EN - transmission of value is on

CFG - counter configuration

0, 0	oounto	l conngai	adon				
0	0	0	PDI1.4	PDI1.3	PDI1.2	PDI1.1	PDI1.0
.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	PDI2.4	PDI2.3	PDI2.2	PDI2.1	PDI2.0
.15	.14	.13	.12	.11	.10	.9	.8
	PDI1.0	polarity of	of signal [DI1.0 0 -	direct, 1	- inverte	ed
	PDI1.1	polarity of	of signal [DI1.1 0 -	direct, 1	- inverte	ed
	PDI1.2	polarity of	of signal [DI1.2 0 -	direct, 1	- inverte	ed
	PDI1.3	polarity of	of signal [DI1.3 0 -	direct, 1	- inverte	ed
	PDI1.4	polarity of	of signal [DI1.4 0 -	direct, 1	- inverte	ed
	PDI2.0	polarity of	of signal [DI2.0 0 -	direct, 1	- inverte	ed
	PDI2.1	polarity of	of signal [DI2.1 0 -	direct, 1	- inverte	ed
	PDI2.2	polarity of	of signal [DI2.2 0 -	direct, 1	- inverte	ed
	PDI2.3	polarity of	of signal [DI2.3 0 -	direct, 1	- inverte	ed
	PDI2.4	polarity of	of signal [DI2.4 0 -	direct, 1	- inverte	ed

MODEI - counter configuration

0	MODEI1			C0full		MODEIC)
.7	.6	.5	.4	.3	.2	.1	.0
0		MODEI3	3	C2full		MODEI2	2
.15	.14	.13	.12	.11	.10	.9	.8

MODEI0 mode of inputs:

000 - irc V, G, MD, (NI), (Ref) 001 - dir Imp, Dir, (MD) 010 - up/dn Up, Dn, (MD) 100 - tim 86,4 kHz, Tim 110 - cnt clk, En

C0full mode of counter 0: 0 - 3 input, 1 - 5 output

MODEI1 mode of inputs:

000 - irc V, G, (MD)

001 - dir Imp, Dir, (MD) 010 - up/dn Up, Dn, (MD)

101 - per 86,4 kHz, Per

MODEI2 mode of inputs:

000 - irc V, G, MD, (NI), (Ref)

- 001 dir Imp, Dir, (MD)
- 010 up/dn Up, Dn, (MD)
- 100 tim 86,4 kHz, Tim

110 - cnt clk, En

C2full mode of counter 3: 0 - 3 input, 1 - 5 output

MODEI3 mode of inputs: 000 - irc V, G, (MD)

- 001 dir Imp, Dir, (MD)
- 010 up/dn Up, Dn, (MD)
- 101 per 86,4 kHz, Per

<i>FLT</i> - filters at inputs							
Fl	_3	F	FL2		FL1		_0
.7	.6	.5	.4	.3	.2	.1	.0
FL	_7	FL6		FL5		FL4	
.15	.14	.13	.12	.11	.10	.9	.8
FL	FL11 FL10		.10	FL9		FL8	
.23	.22	.21	.20	.19	.18	.17	.16
FL	.15	FL14		FL	.13	FL	.12
.31	.30	.29	.28	.27	.26	.25	.24

FLn - filter setup at input n 00 - OFF

00 - OFF 01 - filter 0.18 ms

10 - filter 1.5 ms

11 - filter 12 ms

Example of module declaration :

#struct	TModu	.E1 ;module declaration structure
	USINT	version, ;description version
	USINT	rack, ;rack address
	USINT	address, ;module address in the rack
	UINT	LogAddress, ;logic address
	UINT	LenInputs, ;length of input data zone
	UINT	LenOutputs, ;length of output data zone
	DINT	OffsetInputs, ;position of input data zone
	DINT	OffsetOutputs, ;position of output data zone
	UINT	InitTable ;initialization table index
#module	TModu	E1 1, 0, 8, 0, 40, 40,offset(r0_p8_CI0),

______offset(r0_p8_C00), ____indx (_r0_p8_Table)

4.15 Module connection examples

Example 1: The use of the IC-7702 module in the function of the positioning module. An incremental counter, a measurement contact MD and a reference sensor are connected to the first counter C0. The outputs from IC-7702 control by means of two values (UP and DOWN) the drive motor, the revolutions are controlled stepwise by digital outputs Fast and Slow from module OS-7402.

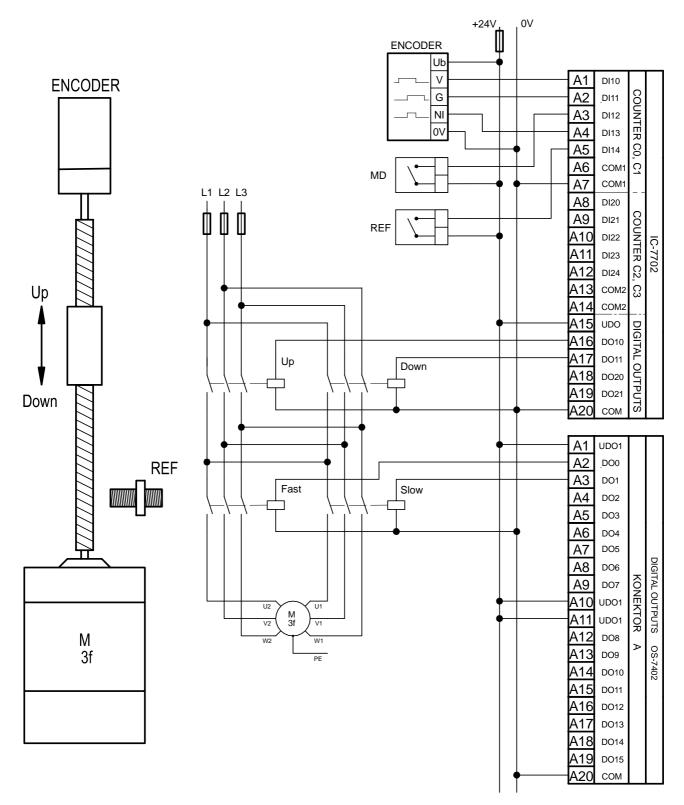


Fig. 4.19 Use of module IC-7702 for positioning (example of connection)

Example 2: - Connection of two incremental sensors including evaluation of null impulses - Connection of contacts of the measurement contact (MD)

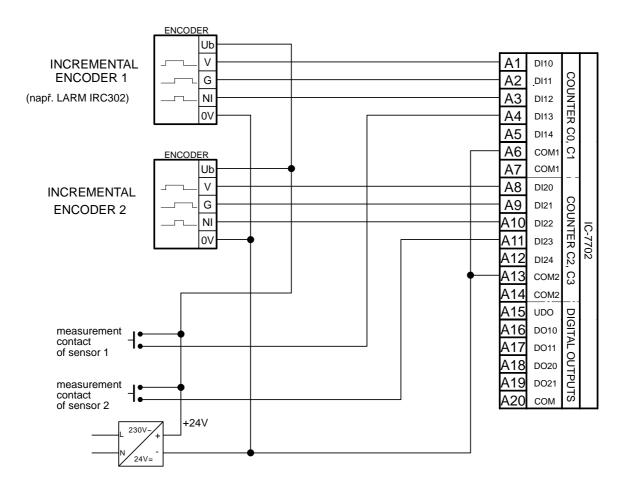


Fig. 4.20 Connection of module IC-7702 according to example 2

On Fig. 4.20 the basic use in the configuration for the evaluation of two incremental encoders is illustrated. The connection assumes a sensor fed from a source 24 V= with the employment of an external power supply source 24 V. The outputs of the counter are open PNP collectors (switches against positive terminal, power supply +24 V). The contact of the measurement contact is fed from a source 24 V= (as a standard digital input of the PLC).

- **Example 3:** Connection of 4 pulse outputs (e.g. water meters, gas meters, etc.), the IC-7702 module is used as 4 forward counters 32 bits.
 - Control of 4 external relays by the outputs of the module

Fig. 4.21 Connection of module IC-7702 according to example 3

On Fig. 4.21, the basic use in the configuration of the module as 4 forward counters is illustrated. The connection assumes pulse outputs from the technology 24 V= as an open PNP collector and an equivalent solution (switches against positive terminal, power supply +24 V). Possible switch bounces can be treated by a digital adjustable filter on the module. All the outputs of the module are used as standard outputs of the PLC.

Example 4 - Connection of 4 incremental sensors without null impulses

- Connection of 4 contacts of the measurement contact (MD) with switching by means of module outputs.

The MD contacts can be used for external resetting of the counters. The resistances 2k2 ensure the minimum load of the outputs, the diodes separate particular switches connected the common input.

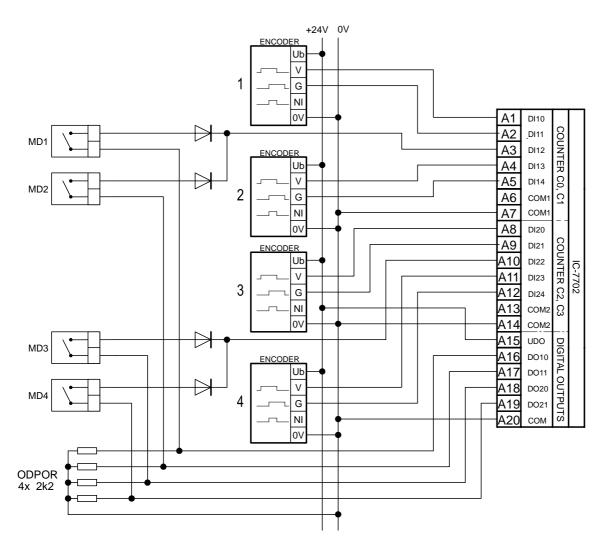


Fig. 4.22 Connection of module IC-7702 according to example 4

Notes

<u>Notes</u>

For more information please contact: Teco a. s. Havlíčkova 260, 280 58 Kolín 4, Czech Republic tel.: +420 321 737 611, fax: +420 321 737 633, teco@tecomat.cz, www.tecomat.com

TXV 004 22.02

The manufacturer reserves the right to make modifications and/or changes to the documentation. The latest version is available on the Internet at www.tecomat.cz