

lecomal®

MODULÁRNÍ PROGRAMOVATELNÉ AUTOMATY

DIGITAL MODULES TC700

DIGITAL MODULES TC700

1st Edition - March 2004

Table of contents

1.	INT	RODUCTION	5
2.	ME	CHANICAL DESIGN	6
	2.1.	CONNECTORS - ENCODING	
	2.2	CONNECTORS - FEATURES	
•			
3.	3.1	QUIREMENT FOR MODULE FEEDING FEEDING OF INPUT AND OUTPUT CIRCUITS OF PLC	11
	3.1.1	Power supply sources PS-25/24, PS-50/24 and PS-100/24 PREVENTATIVE PROTECTION AGAINST INTERFERENCE	
	3.2 3.2.1		
	3.2.1	Use of interference elimination unit	12
4.	DIG	ITAL INPUT MODULE IB-7302	13
	4.1	BASIC PARAMETERS	
	4.2	OPERATIONAL CONDITIONS	13
	4.3	ELECTRICAL PARAMETERS	
	4.4	POWER SUPPLY	
	4.5	CONNECTION	
	4.6	OPERATION	
	4.6.1	Module HW configuration	
	4.6.2	Putting in operation	
	4.7	DIAGNOSTICS	
	4.8		-
	4.9 4.10	MODULE SETUP INPUT DATA STRUCTURE	
	4.10	APPENDIX FOR ADVANCED USERS	
	4.11.1		
	4.11.1	MODULE CONNECTION EXAMPLES	
	4.12	MODULE CONNECTION EXAMIPLES	22
5.	DIG	ITAL INPUT MODULE IB-7303	23
	5.1	BASIC PARAMETERS	
	5.2	OPERATIONAL CONDITIONS	
	5.3	ELECTRICAL PARAMETERS	
	5.4	POWER SUPPLY	
	5.5	CONNECTION	
	5.6	OPERATION	
	5.6.1	Module HW configuration	
	5.6.2	Putting in operation	
	5.7		
	5.8		
	5.9		
	5.10	INPUT DATA STRUCTURE APPENDIX FOR ADVANCED USERS	
	5.11 5.11.1		
	5.11.1		SI

	5.12	MODULE CONNECTION EXAMPLES	34
6.	DIG	ITAL INPUT MODULE IB-7305	35
	6.1	BASIC PARAMETERS	
	6.2	OPERATIONAL CONDITIONS	35
	6.3	ELECTRICAL PARAMETERS	35
	6.4	POWER SUPPLY	36
	6.5	CONNECTION	
	6.6	OPERATION	
	6.6.1	Module HW configuration	
	6.6.2	Putting in operation	
	6.7	DIAGNOSTICS	
	6.8	INDICATION	
	6.9	MODULE SETUP	
		INPUT DATA STRUCTURE	
		APPENDIX FOR ADVANCED USERS	
	6.11.1	Initialization data structure	41
	6.12	MODULE CONNECTION EXAMPLES	43
7.		ITAL OUTPUT MODULE OS-7401	лл
1.	7.1	BASIC PARAMETERS	
	7.1	OPERATIONAL CONDITIONS	
	7.3	ELECTRICAL PARAMETERS	
	7.4	POWER SUPPLY	
	7.5	CONNECTION	
	7.6	OPERATION	
	7.6.1	Module HW configuration	
	7.6.2	Putting in operation	
	7.7	DIAGNOSTICS	
	7.8		
	7.9	MODULE SETUP	
	7.10	TRANSMITTED DATA STRUCTURE	
		APPENDIX FOR ADVANCED USERS	
		Initialization data structure	
	7.12	MODULE CONNECTION EXAMPLES	52
~			
8.	_	ITAL OUTPUT MODULE OS-7402	
	8.1	BASIC PARAMETERS.	
	8.2	OPERATIONAL CONDITIONS	
	8.3	ELECTRICAL PARAMETERS	
	8.4	POWER SUPPLY	
	8.5	CONNECTION	55
	8.6	OPERATION	55
	8.6.1	Module HW configuration	55
	8.6.2	Putting in operation	55
	8.7	DIAGNŎSTIĊS	
	8.8	INDICATION	
	8.9	MODULE SETUP	
		TRANSMITTED DATA STRUCTURE	
		APPENDIX FOR ADVANCED USERS	
	8.11.1		
		MODULE CONNECTION EXAMPLES	

9. DIO	GITAL OUTPUT MODULE OS-7405	.62
9.1	BASIC PARAMETERS	
9.2	OPERATIONAL CONDITIONS	
9.3	ELECTRICAL PARAMETERS	
9.4	POWER SUPPLY	
9.5	CONNECTION	
9.6	OPERATION	
9.6.1	Module HW configuration	
9.6.2	Putting in operation	
9.7		
9.8		
9.9		
9.10 9.11		
	APPENDIX FOR ADVANCED USERS 1 Initialization data structure	
9.11.	MODULE CONNECTION EXAMPLES	.07
9.12	MODULE CONNECTION EXAMPLES	.00
10. DI	GITAL OUTPUT MODULE OR-7451	.69
10.1	BASIC PARAMETERS	
10.2	OPERATIONAL CONDITIONS	.69
10.3	ELECTRICAL PARAMETERS	.70
10.4	POWER SUPPLY	.70
10.5	CONNECTION	.70
10.6	OPERATION	.71
	1 Module HW configuration	
	2 Putting in operation	
10.7	DIAGNOSTICS	
10.8	INDICATION	
10.9	MODULE SETUP	
10.10		
10.11		
	.1 Initialization data structure	
10.12	MODULE CONNECTION EXAMPLES	.76
11. DI	GITAL OUTPUT MODULE OR-7453	77
11.1	BASIC PARAMETERS	
11.2	OPERATIONAL CONDITIONS	.77
11.3	ELECTRICAL PARAMETERS	
11.4	POWER SUPPLY	
11.5	CONNECTION	
11.6	OPERATION	
11.6.	1 Module HW configuration	.79
11.6.2	2 Putting in operation	
11.7	DIAGNŎSTIĊS	
11.8	INDICATION	.80
11.9	MODULE SETUP	.80
11.10		
11.11		
11.11		
MOD	ULE CONNECTION EXAMPLES	.83

1. INTRODUCTION

Digital input modules (Table 1.1) serve for connection of input logic signals from end limit switches and controls of the object being controlled to the programmable logic controller (PLC) TECOMAT TC700.

The modules ensure the conversion of the voltage level at the input to the level of internal signals of the peripheral system and galvanic isolation of the input signals as well as filtering off of faults.

Digital input modules (Table 1.1) serve for controlling of actuators and indication members of an object being controlled. The modules ensure the conversion of the internal voltage levels of the TECOMAT TC700 PLC to the voltage levels for controlling of actuators and indication members as well as galvanic isolation of outputs from internal signals. Logic levels of input and output signals are signalized by green LEDs on the front panel of each module.

The information on module type and their basic parameters can be found on the front plate and module sides. The assignment of signals on the terminals of the module connectors is illustrated on the inside of the door. The supply voltage of each module type has to correspond to the requirements given in chapter 3.

Digital modules in the PLC are unequivocally identified by their position in the rack and by rack address. Digital modules can be fitted at any arbitrary position of both the main and expansion racks.

The IB-7303 input module also optionally allows to initiate interruption, which allows preferential operation of an event. The request for interrupt is possible both with the leading and trailing edge of the input signal (according to module signal). The interrupt can be initiated only by modules fitted in the main frame.

Recommendation: To increase reliability we do not recommend to place relay and triac modules close to central, communication and analog modules.

 Table 1.1
 List of modules with order numbers

Module	Modification	Order
type		number
IB-7302	32 inputs 24 V DC, 5 ms, Common pole minus for 8 inputs	TXN 173 02
IB-7303	16 inputs 24 V DC/AC 0,5 ms, interruption, Common pole for 8 inputs	TXN 173 03
IB-7305	16 inputs 230V AC 10 ms, Common pole for 8 inputs	TXN 173 05
OS-7401	16 PNP outputs 24V DC / 2A, Common pole plus	TXN 174 01
OS-7402	32 PNP outputs 24V DC / 0,5A, Common pole plus	TXN 174 02
OS-7405	16 triac outputs 24 – 230 V AC / 0,25A, Common pole for 8 outputs	TXN 174 05
OR-7451	16 relay outputs max. 230V AC / 3A, Common pole for 4 outputs	TXN 174 51
OR-7453	8 relay outputs max. 230V AC / 3A, individual outputs	TXN 174 53

2. MECHANICAL DESIGN

Each module has a plastic protective case 30 mm wide. After opening the door you can access the connectors for signal connection. At the bottom of the unit there is a hole for cables connected to the technology being controlled.

The modules are fitted with connectors, plug-in counterparts of which have screw-type or screwless spring terminals. Taking out of each connector is facilitated by means of locking levers. By moving the locking lever round a slight amount, the terminal becomes loose. When fitting the connector on, the locking lever has to be moved round a slight amount in reverse direction and, for connectors TXN 102 3x, the locking levers serve also to secure the connector against disconnecting.

The connectors are ordered separately and are ready for mechanical encoding. For each module type, a different code is used, so that it is ensured that the user does not interchange the cables by mistake with another connections and does not possibly destroy the module by a higher voltage. Encoding is carried out by means of plastic pins into the connector (according to the instructions for use, which are part of each connector set). The modules are supplied with counterparts of connectors already encoded according to Fig. 2.2.

Fixation of the module on the rack is easy and done by means of a screw located at the top part of the case.

When fixing the module on the rack, the module has to be put with its two lugs at the rear bottom part of the case into the holes at the bottom edge of the metal frame in required position and by swinging movement press the module down onto the connector of the bus and secure it by the screw located at the top side of the case.

When you want to take the module out off the rack, loose the screw at the top part of the case and by swinging movement towards you and down, tilt the module from the rack and take it carefully out of the rack.

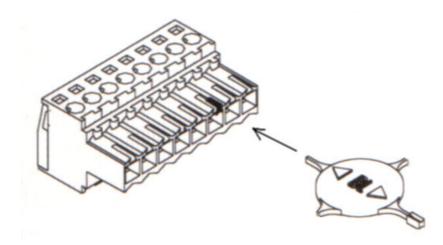
ATTENTION! The modules contain parts sensitive to static charge, therefore, it is necessary to follow the safety rules when working with these circuits! Any handling must be done on the module taken out from the rack!

Table 2.1 Dimensions and weights of modules

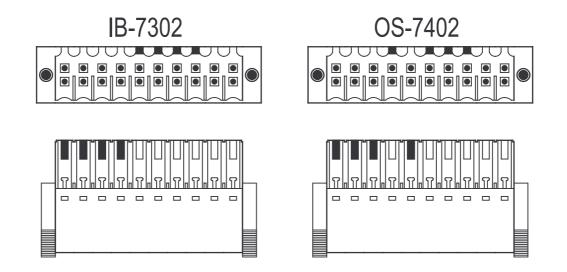
Dimensions	- height	198 mm
	- width	30 mm
	- depth	137 mm
Weight		0,3 to 0,4 kg (according to type)

ATTENTION! Taking off and plugging in of the peripheral module out of / into the module has to be carried out only when the power supply of the controlled circuits is off.

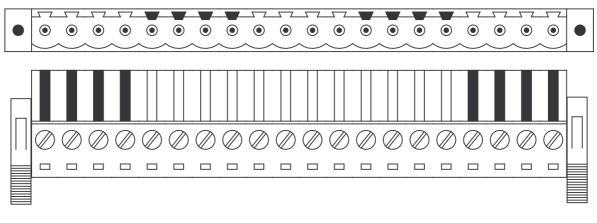
2.1. CONNECTORS - ENCODING

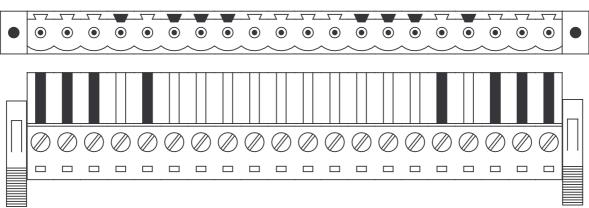

The connectors are supplied without encoding, the encoding elements are part of the packaging of each connector. The connectors can get a code to avoid the connector to be plugged in another type of connector.

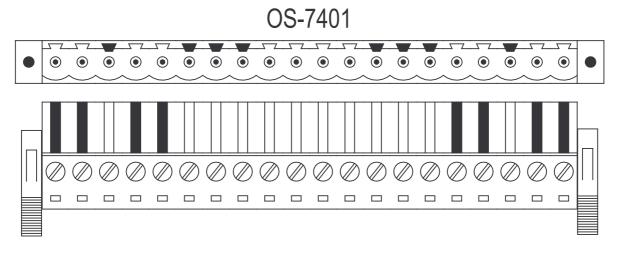
The male connector in the module has already a code from the manufacturer, the peripheral connector is encoded by the customer. The code of each module is given in the basic documentation supplied with the module (the position of the coding element is illustrated by a black rectangle on the figure).


Encoding elements supplied with the connector are designed to be pushed in the grooves of the connector (see Fig. 2.1).

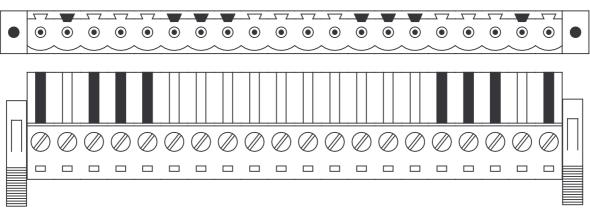
Encoding procedure:

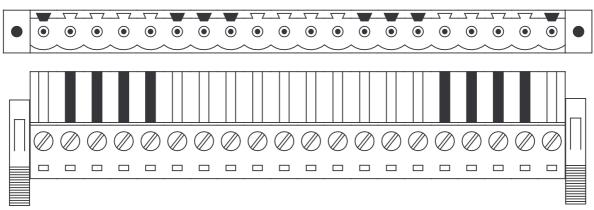

The encoding element is pushed in the direction of arrows \lt **BL** \succ into the groove of the connector (the elements are different for connectors TXN 102 3x and for connectors TXN 102 40 – two-line elements with raster 3,5 mm). After pushing in the stop position, the rest of the element is broken off (see Fig. 2.1). The same procedure is used for the second side of the encoding element.


Fig. 2.1 Plugging in of the encoding element into connector body



IB-7303





OS-7405

OR-7451

OR-7453

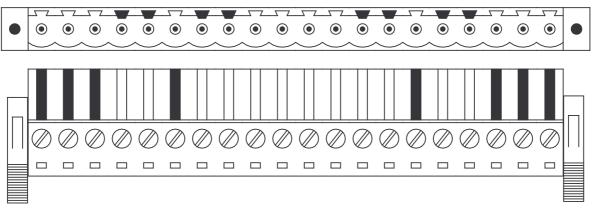


Fig. 2.2 Encoding of peripheral connectors and module male connector (view of the male connectors from the pins, i.e. from the door side)

2.2 CONNECTORS - FEATURES

		Order number of connector set			
		TXN 102 30	TXN 102 31	TXN 102 32	TXN 102 40
No. of connectors i	n set	1	1	1	2
No. of connector		1x20	1x20	1x20	2x10
terminals					
Terminal spacing	mm	5,08	5,08	5,08	3,5
Type of terminal		screwless (spring)	Screw, screw in line with conductor	Screw, screw perpendicularly to conductor	screwless (spring)
Length of					
stripping of	mm	10	13	7	7
conductor					
	2		onductor dimensions	0.00 0.5	0.00 1
Clamping range	mm ²	0,08 ÷ 2,5	0,08 ÷ 1,5	0,08 ÷ 2,5	0,08 ÷ 1
Wire ¹⁾	mm^2	0,5 ÷ 2,5	0,5 ÷ 1,5	0,5 ÷ 2,5	0,5 ÷ 1
Cable ²⁾	mm^2	0,5 ÷ 2,5	0,5 ÷ 1,5	0,5 ÷ 2,5	0,5 ÷ 1
Cable with female header ³⁾	mm ²	0,5 ÷ 2,5	0,5 ÷ 1,5	0,5 ÷ 2,5	_
Cable with female header with plastic collar ⁴⁾	mm²	0,5 ÷ 1,5	0,5 ÷ 1,5	0,5 ÷ 1,5	-
			1	1	
Nominal voltage	V	250	250	250	80
Nominal current	Α	10	10	9	6

¹⁾ Wire, e.g. harmonized type H05(07) V-U

²⁾ Cable, e.g. harmonized type H05(07) V-K

³⁾ Cable, with copper cable female header according to DIN 46228/1

⁴⁾ Cable, with cable female header with plastic collar according to DIN 46228/4

3. REQUIREMENT FOR MODULE FEEDING

3.1 FEEDING OF INPUT AND OUTPUT CIRCUITS OF PLC

We recommend to feed the alternating input and output circuits of the PLC from an isolating transformer. An RC member (R = 100 Ω / 2 W, C = 2 μ F / 250 V_{ef}) has to be connected to the secondary winding, from which the output circuits being switched by alternating output modules are fed.

Alternating input circuits have to be fed from a separate secondary winding (no other appliances must be connected to the supply voltage of the input circuits). If necessary, one end of the secondary winding can be connected to the ground terminal of the PLC rack.

Direct input and output circuits are fed from a direct voltage source (e.g. power supply sources of PS series). No other appliances must be connected to the source that could cause the increase of interference or overvoltage level. A permissible tolerance of direct supply voltages including ripple effect for the input and output circuit is 20 per cent from the voltage nominal value. Detailed information can be found in the Manual for designing of systems TECOMAT and TECOREG TXV 001 08.01.

3.1.1 Power supply sources PS-25/24, PS-50/24 and PS-100/24

For feeding of 24 V circuits, power supply sources PS-25/24 (order nr. TXN 070 22), PS-50/24 (order nr. TXN 070 10) or PS-100/24 (order nr. TXN 070 15) can be employed, which serve for feeding of direct current circuits 24 V with the input power of 25 W, 50 W or 100 W, respectively. The power sources are fed from the 230 V AC network. The sources are designed to be installed on the bar.

Unit type	Nominal voltage	Output loss for 1 input
IB-7302	24 V DC	0,09 W
IB-7303	24 V DC/AC	0,2 W
IB-7305	230 V AC	0,25 W

Table 3.1 Output loss on one input

Table 3.2 Output loss on one output

Unit type	Nominal voltage	Input current	Output loss for 1 input
OS-7401	24 V DC	2 A	0,35 W
OS-7402	24 V DC	0,5 A	0,1 W
OS-7405	115 - 230 V AC	0,25 A	0,3 W

3.2 PREVENTATIVE PROTECTION AGAINST INTERFERENCE

To reduce the level of interference in the distributing frame with the installed PLC, all the inductive loads have to be treated with interference elimination devices. For this purpose, interference elimination units are delivered (Table 3.3, Table 3.4).

3.2.1 Use of interference elimination unit

The interference elimination unit serves for protecting of the digital direct as well as alternating output units of the PLC against voltage peaks that occur especially when controlling inductive load. Though some units have this protection on the board, we recommend to do this protection straight on the load. This is due to maximum avoidance of interference spreading as a source of possible faults.

As protective member we deliver varistors or RC-members, the highest efficiency can be reached by combination of both protection types. The unit can be used anywhere in controlled technologies to protect contacts or against interferences arising during control processes.

Table 3.3 Interference elimination units

Interference elimination unit content	For load	Unit order number
8x varistor 24 V	24 V DC/AC	TXF 680 00
8x varistor 48 V	48 V DC/AC	TXF 680 01
8x varistor 115 V	115 V AC	TXF 680 02
8x varistor 230 V	230 V AC	TXF 680 03
8x RC member - R = 10Ω , C = $0,47\mu$ F	24 - 48 V DC/AC	TXF 680 04
8x RC member - R = 47Ω , C = 0.1μ F	115 - 230 V AC	TXF 680 05

 Table 3.4 Parameters of varistors used in interference elimination units

Energy that can be captured by the varistor I ² t	< 80
(t is for duration of the blanking pulse - in ms)	
Current through varistor I	< 25 A
Mean value of output power loss P	< 0,6 W

Protection element connection

An example of connection is given on Fig. 3.1. The principles of interference elimination in the position of its source as close as possible have to be taken in account.

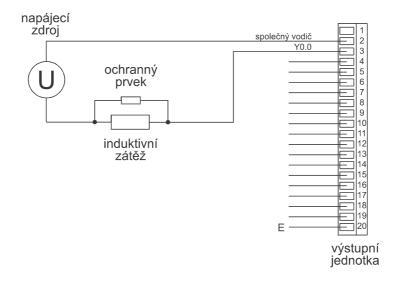


Fig. 3.1 Protective member connection parallel to the load

Further information on interference elimination can be found in the Manual for designing of systems TECOMAT and TECOREG TXV 001 08.01, section 7.3.

4. DIGITAL INPUT MODULE IB-7302

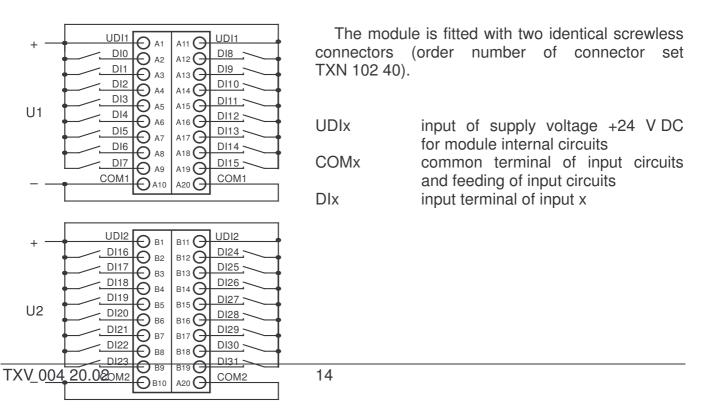
The module IB-7302 is designed for scanning of up to 32 digital signals 24 V DC with a common minus pole, type 1. The module is fitted with two connectors (set TXN 102 40, they are ordered separately) with screwless terminals on which always 16 inputs are terminated. The module is equipped with intelligent input circuits requiring connection of external supply voltage of 24 V DC.

4.1 BASIC PARAMETERS

Product standard	ČSN EN 61131-2
Protection class of electrical object ČSN 33 0600	111
Connection	Screwless terminals, max. 1,0 mm ² conductor per terminal
Type of equipment	Built-in
Coverage (after installation into rack)	IP20 ČSN EN 60529
Dimensions	137 x 30 x 198 mm

4.2 **OPERATIONAL CONDITIONS**

Class of ambient influence – ČSN 33 2000-3	Normal
Operating temperatures range	0 ℃ to + 55 ℃
Permissible temperatures during transport	-25 ℃ to +70 ℃
Relative humidity	10 % to 95 % without condensation
Atmospheric pressure	min. 70 kPa (< 3000 m above see level)
Degree of pollution - ČSN EN 61131-2	2
Overvoltage category of installation -	II
ČSN 33 0420-1	
Working position	Vertical
Type of operation	Continuous
Electromagne	etic compatibility
Emissions - ČSN EN 55022*	Class A
Immunity	Table 16, ČSN EN 61131-2
Vibration resistance (sinusoidal vibrations)	10 Hz to 57 Hz amplitude 0,075 mm,
Fc according to ČSN EN 60068-2-6	57 Hz to 150 Hz acceleration 1G


* This is a product of Class A. In indoor conditions (i.e. such conditions, where using of radio and TV sets can be supposed in a distance of 10 m from the mentioned equipment), the product can cause radio disturbances. It might be required in such cases that the user takes necessary measures to avoid this.

4.3 ELECTRICAL PARAMETERS

Number of inputs		32	
Number of inputs in the group	Number of inputs in the group		
Galvanic isolation from internal circuits		Yes, groups and mutually	
Diagnostics		Yes, signalization of energized	
		input on module panel	
Common pole		Minus	
Type of inputs		Type 1	
Input voltage			
for log. 0 (UL)	Max.	5 V DC	
	Min.	- 15 V DC	
for log. 1 (UH)	Min.	15 V DC	
	Тур.	24 V DC	
	Max.	30 V DC	
Input current at log. 1	Тур.	3 mA	
Delay from log. 0 to log. 1		5 ms	
Delay from log. 1 to log. 0		5 ms	
External supply voltage of input modules of mod	ule	24 V DC	
Max. consumption from external source (one group)		60 mA	
Insulation voltage among inputs and internal circuits		500 V DC	
Insulation voltage among groups of inputs among each other		500 V DC	
Module output loss	Max.	4 W	
Module input power taken from system source	Max.	1,8 W	

4.4 POWER SUPPLY

The internal circuits of the module are fed from the power supply source, which is part of the TC700 system assembly.

4.5 CONNECTION

Fig. 4.1 Connection of terminal board of module IB-7302

Detailed information on connection, proper installation procedure, examples of module connection and principles for increasing resistance and reliability can be found in the handbook for designing TXV 001 08.01.

4.6 **OPERATION**

4.6.1 Module HW configuration

The module is operated, set and diagnosed from the MOSAIC development environment. No setup is made on the module itself.

4.6.2 Putting in operation

After putting the module into the rack and switching power supply on, the module is fully ready for operation and does not require any other settings of its elements.

4.7 DIAGNOSTICS

The basic diagnostic system of the module is part of the standard module software. The diagnostic system becomes active after module power supply is on, and works independently from the user.

4.8 INDICATION

On the front panel, each input digital signal is assigned one green indication LED. If this LED is on, it indicates the presence of an input signal on the given terminal. Further, there is a green RUN LED on the front panel. If the RUN LED is on,, the module is in the HALT mode, if the RUN LED is flashing, the module is in the RUN mode.

Digital modules

(IB-7302)			
- RUN				
DI 0 8 16	24			
1 9 17	25			
2 10 18	26			
(3) (11) (19)	27			
4 12 20	28			
5 13 21	29			
6 14 22	30			
7 15 23	31			
DI 24 V DC				

Fig. 4.2 Indication panel of module IB-7302

4.9 MODULE SETUP

For a trouble-free module operation it is necessary to perform its SW setup within the frame of module declaration. The activation of the operation of digital inputs is carried out by figures of eight. Each figure of eight can be enabled or disabled to be operated. Further, for each figure of eight, detection of short pulses to log. 0 or to log. 1 can be set. Module setup is carried out within the MOSAIC development environment by means of the dialog given below.

Nastavení modulu IB-7302		×
Zapnutí přenosu bin. vstupů Zapnuto pro 1. osmici Zapnuto pro 2. osmici Zapnuto pro 3. osmici Zapnuto pro 4. osmici		
Detekce krátkých pulzů detekovat pulz 0 pro 1. osmici detekovat pulz 0 pro 2. osmici detekovat pulz 0 pro 3. osmici detekovat pulz 0 pro 4. osmici	 detekovat pulz 1 pro 1. osmici detekovat pulz 1 pro 2. osmici detekovat pulz 1 pro 3. osmici detekovat pulz 1 pro 4. osmici 	
Modul Ize vyjmout za chodu	ОК	🗶 Zrušit 🍞 Nápověda

Fig. 4.3 Module SW setup

Switching on of transmission of digital inputs

By enabling the option Zapnuto pro n. osmici (ON for the n-th figure of eight), transmission of current states of the corresponding figure of eight of inputs into the PLC scratchpad is allowed. If this option is not enabled for a figure of eight, the relevant values will not be transmitted and they do not appear in the PLC scratchpad. The first figure of eight corresponds to the inputs DI0 \div DI7, the second figure of eight corresponds to the inputs DI8 \div DI15, the third figure of eight corresponds to the inputs DI24 \div DI31.

Detection of short pulses

By enabling the option *Detekovat pulz 0 pro n. osmici* (Detect pulse 0 for the n-th figure of eight), the function of short pulse interception to log. 0 is activated. By enabling the option *Detekovat pulz 1 pro n. osmici* (Detect pulse 1 for the n-th figure of eight), the function of short pulse interception to log. 1 is activated.

If an input signal is to be intercepted, which is mainly in the state of log. 1 and pulses to log. 0 appear on the signal, which are shorter than the longest possible cycle time of the PLC, then these pulses could be lost, since only the states of the inputs at the moment of the I/O scan of the central unit are standardly transmitted to the PLC. If we enable the detection of short pulses for the state of log. 0, then the input module reads the corresponding input much more frequently (approx. 6 ms), executes logical product of read values, which is then sent to the central unit as the resulting value of the input. If the value of log. 0 appears on the input during the cycle, it will be held in the module memory till the next data transmission to the central unit, even if the value of log. 1 is already on the input at the moment of data transmission. The same is valid analogically for the input signal, which is mainly in the state of log. 0 and short pulses to

log. 1 appear on the signal. We enable the detection of short pulses for the state of log. 1 and the input module then executes the logical product of the read values of the input.

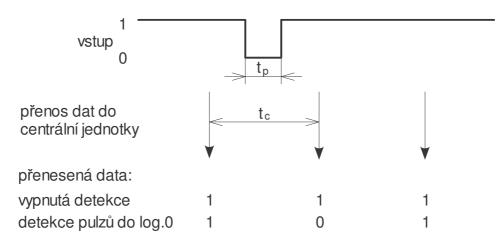


Fig. 4.4 Function of detection of short pulses to log. 0

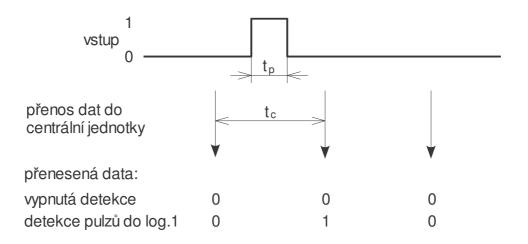


Fig. 4.5 Function of detection of short pulses to log. 1

For the *a*. *m*. figures, the following relation is valid: $t_c > t_p > 6ms$.

4.10 INPUT DATA STRUCTURE

The digital input module IB-7302 operates 32 input digital signals. In the data being transmitted, each input signal is represented by one variable of Boolean type. The structure items of the digital module have symbolic names assigned, beginning with the rack number and position number in the rack. In the column Uplný zápis (Full Write), concrete symbolic name is specified for the given item. If you want to use the data in the user program, you will use either this symbolic name or you will write your symbolic name in the column Alias, that can be used later. Do not use absolute operands in any case, since they can change after a new compilation of the user program. The structure of passed data is obvious from the panel Nastavení V/V (Setting V/V) in the MOSAIC development environment (icon III).

IEC 💑 💑 🚜 D'	EC EXP HEX BIN STR 🔢	1 :	: 0		
) RM 0					
L PW-7903 2 CP-7002	2 3 1B-7302				
itruktura dat	Úplný zápis	Alias	[∢] Svorka	Abs./délka	Hodnota
DI : TBIN_32DI	r0_p3_D1				
— DIO : BOOL	🗛 r0_p3_DI~DI0		A2	% X30.0	0
DI1 : BOOL	🗛 r0_p3_DI~DI1		A3	% X30.1	0
— D12 : BOOL	🗛 r0_p3_DI~DI2		A4	% X30.2	0
	▶ r0_p3_DI~DI3		A5	% X30.3	0
-DI4 : BOOL	F0_p3_DI~DI4		A6	% X30.4	0
D15 : BOOL	💫 r0_p3_DI~DI5		A7	% X30.5	0
DI6 : BOOL	💫 r0_p3_DI~DI6		A8	% X30.6	0
D17 : BOOL	F0_p3_D1~D17		A9	% X30.7	0
	📕 r0_p3_DI~DI8		A12	% X31.0	0
	r0_p3_DI~DI9		A13	% X31.1	0
—DI10 : BOOL	r0_p3_DI~DI10		A14	% X31.2	0
DI11 : BOOL	Interior 10 and 10		A15	% X31.3	0
-DI12 : BOOL	Interior 10 − 10 − 10 − 10 − 10 − 10 − 10 − 10		A16	%X31.4	0
-DI13 : BOOL	📕 r0_p3_DI~DI13		A17	% X31.5	0
-DI14 : BOOL	▶ r0_p3_DI~DI14		A18	% X31.6	0
-DI15 : BOOL	Interior 10 − 10 − 10 − 10 − 10 − 10 − 10 − 10		A19	% X31.7	0
-DI16 : BOOL	r0_p3_DI~DI16		B2	% X32.0	0
-DI17 : BOOL	r0_p3_DI~DI17		B3	% X32.1	0

Fig. 4.6 Data structure of digital module IB-7302

The module data structure is generated by the Mosaic program automatically (according to Setup V/V) to file HWconfig.ST.

TYPE

TBIN_32DI	: STRUCT
DIO :	BOOL;
DI1 :	BOOL;
DI2 :	BOOL;
DI3 :	BOOL;
DI4 :	BOOL;
DI5 :	BOOL;
DI6 :	BOOL;
DI7 :	BOOL;
DI8 :	BOOL;
DI9 :	BOOL;
DI10 :	BOOL;
DI11 :	BOOL;
DI12 :	BOOL;
DI13 :	BOOL;
DI14 :	BOOL;
DI15 :	BOOL;
DI16 :	BOOL;
DI17 :	BOOL;
DI18 :	BOOL;
DI19 :	BOOL;
DI20 :	BOOL;
DI21 :	BOOL;

DI22 : BOOL; DI23 : BOOL; DI24 : BOOL; DI25 : BOOL; DI26 : BOOL; DI27 : BOOL; DI28 : BOOL; DI29 : BOOL; DI30 : BOOL; DI31 : BOOL; END_STRUCT; END_TYPE

VAR_GLOBAL r0_p3_DI AT %X30 : TBIN_32DI; END_VAR

Variable DI

The value passed in variable DIx corresponds to the state of the input signal of the corresponding digital input.

4.11 APPENDIX FOR ADVANCED USERS

The structures given below are typically automatically generated by the MOSAIC development environment (into file *.HWC) and it is not recommended to alter them. If the programmer does not use automatic configuration generation, the description below serves as a sample for manual module configuration.

4.11.1 Initialization data structure

The module requires an initialization table, this is represented in the declaration file of the MOSAIC development environment (*.HWC) by the following description:

<pre>#struct _TTS_Head</pre>	;module	heading structure
UINT Modul]	ID, ;module	type identification code
USINT Stat0,	, ; status	of data exchange
USINT Stat1	; status	of data exchange
#struct _TTS_IB7302 _TTS_Head He USINT[4] EI USINT FI USINT EI	ead, ;table : DI, ;activa LT, ;filter	initialization table structure heading tion of figures of eight of the input ing activation - not used pulse detection activation

Example of declaration of initialization table :

```
#table _TTS_IB7302 _r0_p3_Table = 7302,$00,$00, ;table heading
$80,$80,$80,$80, ;activation of figures of
;eight of the input
```

Mechanical design\$00,; filtering\$00; short pulses

Example of declaration of module :

#struct	TModul	LE1	;module declaration structure
	USINT	version,	;description version
	USINT	rack,	;rack address
	USINT	address,	;module address in the rack
	UINT	LogAddress,	;logic address
	UINT	LenInputs,	;length of input data zone
	UINT	LenOutputs,	;length of output data zone
	DINT	OffsetInputs,	;position of input data zone
	DINT	OffsetOutputs,	; position of output data zone
	UINT	InitTable	; initialization table index
			0,offset(r0_p3_DI), 0,
indx	(_r0_ <u></u>	p3_Table)	

The meanings of the items of the initialization table:

ModulID - module type identification code, here 7302

STAT0, STAT1 - data exchange status, here 0

EDI	 activation of operation of the figure of eight of digital inputs
	= \$80 - the figure of eight of inputs will be operated
	= \$00 - the figure of eight of inputs will not be operated

FLT - for module IB-7302 not used

EDG - short pulse detection

EDG

LDG							
LP3	SP3	LP2	SP2	LP1	SP1	LP0	SP0
.7	.6	.5	.4	.3	.2	.1	.0

SPn - short pulse detection for a figure of eight n

- = 1 enabled
- = 0 disabled

LPn - detected level of short pulse

- = 1 detect short pulses to the level of logic 1
- = 0 detect short pulses to the level of logic 0

4.12 MODULE CONNECTION EXAMPLES

5. DIGITAL INPUT MODULE IB-7303

The IB-7303 module is designed for scanning of up to 16 digital signals 24 V DC / AC with a common pole (according to connection minus, plus or alternating feeding), type 1. The module is fitted with a connector allowing the customer to make a choice of several variants selected and ordered separately by the customer (order numbers TXN 102 3x). The connectors are described in the documentation TXV 102 30 or in the Manual for designing TXV 001 08.01.

5.1 BASIC PARAMETERS

Product standard	ČSN EN 61131-2
Protection class of electrical object ČSN 33 0600	III
Connection	Removable connector,
	max. 2,5 mm2 conductor per terminal
Type of equipment	Built-in
Coverage (after installation into rack)	IP20 ČSN EN 60529
Dimensions	137 x 30 x 198 mm

5.2 OPERATIONAL CONDITIONS

Class of ambient influence – ČSN 33 2000-3	Normal
Operating temperatures range	0 ℃ to + 55 ℃
Permissible temperatures during transport	-25 ℃ to +70 ℃
Relative humidity	10 % to 95 % without condensation
Atmospheric pressure	min. 70 kPa (< 3000 m above see level)
Degree of pollution - ČSN EN 61131-2	2
Overvoltage category of installation -	II
ČSN 33 0420-1	
Working position	Vertical
Type of operation	Continuous
Electromagne	etic compatibility
Emissions - ČSN EN 55022*	Class A
Immunity	Table 16, ČSN EN 61131-2
Vibration resistance (sinusoidal vibrations)	10 Hz to 57 Hz amplitude 0,075 mm,
Fc according to ČSN EN 60068-2-6	57 Hz to 150 Hz acceleration 1G

* This is a product of Class A. In indoor conditions (i.e. such conditions, where using of radio and TV sets can be supposed in a distance of 10 m from the mentioned equipment), the product can cause radio disturbances. It might be required in such cases that the user takes necessary measures to avoid this.

5.3 ELECTRICAL PARAMETERS

Number of inputs	16
Number of inputs in the group	8 (in two groups)
Galvanic isolation from internal circuits	Yes, groups and mutually
Diagnostics	Yes, signalization of energized input
	on module panel


Common pole	Accord, to polar	ity of connection			
	(minus, plus alternating feeding)				
Type of inputs		Тур	<u> </u>		
Common pole		Minus	Plus		
Input voltage					
for log. 0 (UL)	Max.	5 V DC	- 5 V DC		
	Min.	- 5 V DC	5 V DC		
for log. 1 (UH)	Min.	15 V DC / AC	- 15 V DC / AC		
	Тур.	24 V DC / AC	-24 V DC / AC		
	Max.	30 V DC / AC	- 30 V DC / AC		
Input current at log. 1	Тур.	5 mA			
Delay from log. 0 to log. 1 (without filtering)		0,5 ms			
Delay from log. 1 to log. 0 (without filtering)		0,5	0,5 ms		
External supply voltage of input modules of modu	le	24 V DC / AC			
Max. consumption from external source (one grou	lar)	50 mA			
Insulation voltage among inputs and internal circu	uits	500 V DC			
Insulation voltage among groups of inputs among	500 V DC				
other					
Module output loss	4 W				
Module input power taken from system source	Max.	1 W			

5.4 POWER SUPPLY

The module is fed from the power supply source, which is part of the TC700 system assembly.

5.5 CONNECTION

The module is fitted with a removable connector (order number of connectors TXN 102 3x). The connection of connectors is illustrated on Fig. 5.1.

Detailed information on connection, proper installation procedure, examples of module connection and principles for increasing resistance and reliability can be found in the handbook for designing TXV 001 08.01.

5.6 OPERATION

5.6.1 Module HW configuration

The module is operated, set and diagnosed from the MOSAIC development environment. No setup is made on the module itself.

5.6.2 Putting in operation

After putting the module into the rack and switching power supply on, the module is fully ready for operation and does not require any other settings of its elements.

5.7 DIAGNOSTICS

The basic diagnostic system of the module is part of the standard module software. The diagnostic system becomes active after module power supply is on, and works independently from the user.

5.8 INDICATION

On the front panel, each input digital signal is assigned one green indication LED. If this LED is on, it indicates the presence of an input signal on the given terminal. Further, there is a green

RUN LED on the front panel. If the RUN LED is on,, the module is in the HALT mode, if the RUN LED is flashing, the module is in the RUN mode.

(IB-7303)
RUN
DI 0 8
19
(2) 10
(3) (11)
4 12
5 (13)
6 14
7 15
DI 24 V AC/DC

Fig. 5.2 Indication panel of module IB-7303

5.9 MODULE SETUP

For a trouble-free module operation it is necessary to perform its SW setup within the frame of module declaration. The activation of the operation of digital inputs is carried out by figures of eight. Each figure of eight can be enabled or disabled to be operated. Further, for each figure of eight, detection of short pulses, filtering and possibility of interrupt initialization from any input or edge can be set. Module setup is carried out within the MOSAIC development environment by means of the dialog given below.

Nastavení modulu IB-7303			X
🗹 Modul může vyvolat přerušení			
Zapnutí přenosu bin. vstupů	Příznaky přerušení		
 ✓ Zapnuto pro 1. osmici ✓ Zapnuto pro 2. osmici 	✓ Zapnuto pro 1. osmici ✓ Zapnuto pro 2. osmici		
Režim filtrace	Detekce krátkých pulzů		
Zapnuto pro 1. osmici	🗌 detekovat pulz 0 pro 1. osmici	🗌 detekovat pulz 1 pro 1. osmici	
Zapnuto pro 2. osmici	detekovat pulz 0 pro 2. osmici	🗌 detekovat pulz 1 pro 2. osmici	
Přerušení od náběžných hran ☑ DI0 DI8 □ DI1 DI9 □ DI2 DI10 □ DI3 DI11 □ DI4 DI12 □ DI5 DI13 □ DI6 DI14 □ DI7 DI15	Přerušení od sestupných hran □ DI0 □ DI8 ♥ DI1 □ DI9 □ DI2 □ DI10 □ DI3 □ DI11 □ DI4 □ DI12 □ DI5 □ DI13 □ DI6 □ DI14 □ DI7 □ DI15		
🗌 Modul Ize vyjmout za chodu	🗸 ок	💥 Zrušit 📪 Nápověda	

Fig. 5.3 Module SW setup

The module can initiate interrupt

By enabling this option we allow the module to initiate the P42 interrupt process under the conditions set in the blocks *Přerušení od náběžných hran* a *Přerušení od sestupných hran* (Interrupt from leading edges and Interrupt from trailing edges).

Switching on of the transmission of digital inputs

By enabling the option Zapnuto pro n. osmici (ON for the n-th figure of eight), we allow the transmission of the current states of the corresponding figure of eight to the PLC scratchpad. If this option is not enabled for a figure of eight of the inputs, the relevant values are not transmitted and they do not appear in the PLC scratchpad. The first figure of eight corresponds to the inputs DI0 \div DI7, the second figure of eight corresponds to the inputs DI8 \div DI15.

Flags of interrupt

By enabling the option Zapnuto pro n. osmici (ON for the n-th figure of eight), we allow the transmission of interrupt flags of the corresponding figure of eight of the inputs to the PLC scratchpad. If this option is not enabled for a figure of eight of the inputs, the relevant values are not transmitted and they do not appear in the PLC scratchpad. These options are available only when the option Modul může vyvolat přerušení (Module can initiate interrupt) is enabled.

Filtering mode

By enabling the option Zapnuto pro n. osmici (ON for the n-th figure of eight), we activate the function of the alternating part on the corresponding figure of eight of inputs. On this figure of eight of inputs, alternating voltage with a frequency of 50 Hz can be then connected. If we connect direct voltage to the inputs with active filtering, the inputs will be in operation, too, but the transmission of the current state from the input to the PLC will be slowed down and the pulses shorter than 4 ms will be suppressed.

Short pulse detection

By enabling the option *Detekovat pulz 0 pro n. osmici* (Detect pulse 0 for the n-th figure of eight), the function of short pulse interception to log. 0 is activated. By enabling the option *Detekovat pulz 1 pro n. osmici* (Detect pulse 1 for the n-th figure of eight), the function of short pulse interception to log. 1 is activated.

If we have an input signal, which is mainly in the state of log. 1 and pulses to log. 0 appear on the signal, which are shorter than the longest possible cycle time of the PLC, then these pulses could be lost, since only the states of the inputs at the moment of the I/O scan of the central unit are standardly transmitted to the PLC.

If we enable the detection of short pulses for the state of log. 0, then the input module reads the corresponding input much more frequently (approx. 1 ms without filtering and approx. 5 ms with filtering), executes logical product of read values, which is then sent to the central unit as the resulting value of the input. If the value of log. 0 appears on the input during the cycle, it will be held in the module memory till the next data transmission to the central unit, even if the value of log. 1 is already on the input at the moment of data transmission.

The same is valid analogically for the input signal, which is mainly in the state of log. 0 and short pulses to log. 1 appear on the signal. We enable the detection of short pulses for the state of log. 1 and the input module then executes the logical product of the read values of the input.

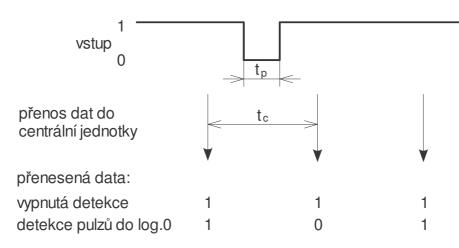


Fig. 5.4 Function of detection of short pulses to log. 0

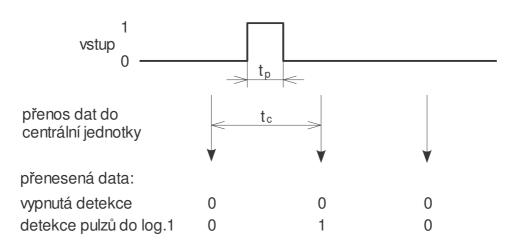


Fig. 5.5 Function of detection of short pulses to log. 1

For the a. m. figures, the following relation is valid: $t_c > t_p > 1ms$ (without filtering) a $t_c > t_p > 5ms$ (with filtering).

Interruption from leading edges

Interruption from trailing edges

By enabling of the corresponding input we define, which inputs during which change of signal are to initiate the P42 interrupt process. For one input, also both edges can be enabled at the same time. The information on which input initiated the interrupt can be found from the flags of the interrupt transmitted to the PLC scratchpad as part of data provided by the IB-7303 module. These options are available only when the option *Modul může vyvolat přerušení (Module can initiate interrupt)* is enabled.

5.10 INPUT DATA STRUCTURE

The digital input module IB-7303 operates 16 input digital signals. In the data being transmitted, each input signal is represented by one variable of Boolean type. In case that the interrupt from input signals is enabled, the flag of localization of the source of interrupt is also indicated in the transmitted data. The structure items of the digital module have symbolic names

Mechanical design

assigned, beginning with the rack number and position number in the rack. In the column Uplnýzápis (Full Write), concrete symbolic name is specified for the given item. If you want to use the data in the user program, you will use either this symbolic name or you will write your symbolic name in the column Alias, that can be used later. Do not use absolute operands in any case, since they can change after a new compilation of the user program. The structure of passed data is obvious from the panel Nastavení V/V (Setting V/V) in the MOSAIC development environment (icon III).

IEC 💑 💑 💑 DE	C EXP HEX BIN STR	t 🛅 2	2:1		
<u>○</u> RM 0					
1 PW-7903 2 CP-7002	3 IB-7303				
Struktura dat	Úplný zápis	Alias	■ Svorka	Abs./délka	Hodnota
∃DI : TBIN_16DI	r0_p3_D1				
— DIO : BOOL	r0_p3_D1~D10		A2	%×30.0	0
-DI1 : BOOL	齃 r0_p3_DI~DI1		A3	% X30.1	0
— D12 : BOOL	齃 r0_p3_D1~D12		A4	% X30.2	0
	齃 r0_p3_DI~DI3		A5	% X30.3	0
-DI4 : BOOL	💫 r0_p3_DI~DI4		A6	%×30.4	0
	💫 r0_p3_DI~DI5		A7	XX30.5	0
	齃 r0_p3_DI~DI6		A8	% X30.6	0
	🖌 r0_p3_D1~D17		A9	% X30.7	0
	💫 r0_p3_DI~DI8		A12	% X31.0	0
-DI9 : BOOL	💫 r0_p3_DI~DI9		A13	% X31.1	0
-DI10 : BOOL	🖌 r0_p3_DI~DI10		A14	% X31.2	0
—DI11 : BOOL	🖌 r0_p3_DI~DI11		A15	% X31.3	0
-DI12 : BOOL	🖌 r0_p3_DI~DI12		A16	XX31.4	0
-DI13 : BOOL	🖌 r0_p3_DI~DI13		A17	% X31.5	0
-DI14 : BOOL	🖌 r0_p3_DI~DI14		A18	% X31.6	0
DI15 : BOOL	🖌 r0_p3_DI~DI15		A19	XX31.7	0
∃INT : TBIN_16INT	r0_p3_INT				
-INTO : BOOL	r0_p3_INT~INTO		A2	% X32.0	0
-INT1 : BOOL	r0_p3_INT~INT1		A3	%X32.1	0
-INT2 : BOOL	r0_p3_INT~INT2		A4	% X32.2	0
-INT3 : BOOL	r0_p3_INT~INT3		A5	% X32.3	0
-INT4 : BOOL	r0_p3_INT~INT4		A6	%×32.4	0
-INT5 : BOOL	10_p3_INT~INT5		A7	% X32.5	0

Fig. 5.6 Data structure of digital module IB-7303

The module data structure is generated by the Mosaic program automatically (according to Setup V/V) to file HWconfig.ST.

 _						
TBI	N_1	6D	Ι	:	STRU	JCT
DIC)	:	во	OL	;	
DII	L	:	во	OL	;	
DI2	2	:	во	OL	;	
DI	3	:	во	OL	;	
DI4	1	:	во	OL	;	
DIS	5	:	во	OL	;	
DI	6	:	BO	OL	;	
DI	7	:	во	OL	;	

DI8 :	BOOL;		
DI9 :	BOOL;		
	: BOOL;		
	: BOOL;		
DI12	: BOOL;		
DI13	: BOOL;		
DI14	: BOOL; : BOOL;		
DI15	: BOOL;		
END_STRU	ICT;		
TRIN 161	NT : STRUCT		
	: BOOL;		
	: BOOL;		
INT2	: BOOL;		
INT3	: BOOL;		
INT4	: BOOL; : BOOL; : BOOL;		
INT5	: BOOL;		
INT6	: BOOL;		
	: BOOL;		
INT8	: BOOL;		
INT9	: BOOL;		
INT10	: BOOL; : BOOL;		
INT11	: BOOL;		
INT12	: BOOL;		
INT13	: BOOL;		
	: BOOL;		
	: BOOL;		
END_STRU	ICT;		
END_TYPE			
VAR GLOBAL	4		
r0_p3_DI		AT	%X3
r0_p3_IN			%X3
END_VAR			

AT %X30 : TBIN_16DI; AT %X32 : TBIN_16INT;

Variable DI

The value passed in variable DIx corresponds to the state of the input signal of the corresponding digital input.

Variable INT

The value passed in variable INTx indicates a request for interrupt from the corresponding digital input. At the same time, the P42 interrupt process of the user program is initiated, when operation of the state occurred is performed. Detail of the process P42 can be found in documentation TXV 001 09 Programmer's manual PLC Tecomat, section 10.5 Interrupt processes.

5.11 APPENDIX FOR ADVANCED USERS

The structures given below are typically automatically generated by the MOSAIC development environment (into file *.HWC) and it is not recommended to alter them. If the programmer does not use automatic configuration generation, the description below serves as a sample for manual module configuration.

5.11.1 Initialization data structure

The module requires an initialization table, this is represented in the declaration file of the MOSAIC development environment (*.HWC) by the following description:

#struct	_TTS_Head		;module heading structure
	UINT ModulID,		;module type identification code
	USINT Stat0,		;status of data exchange
	USINT Stat1		;status of data exchange
#struct	_TTS_MINTRTF		
	USINT MINTR,		; setup of interruption from leading edges
	USINT MINTF		;setup of interruption from trailing edges
#struct	_TTS_IB7303		;module initialization table structure
	_TTS_Head	Head,	;table heading
	USINT[2]	EDI,	;activation of figures of eight of the input
	USINT[2]	EINT,	; interrupt flag activation
	USINT	FLT,	;filtering setup
	USINT	EDG,	;short pulse detection
	_TTS_MINTRTF[2]	MINTRTF	; interruption setup from edges

Example of declaration of initialization table :

<pre>#table _TTS_IB7303 _r0_p3_Table</pre>	= 7303,\$01,\$00,	;table heading
	\$80,\$80,	;activation of figures of
		;eight of the input
	\$80,\$80,	; interruption flags
	\$00 <i>,</i>	;filtering
	\$00,	;short pulses
	\$01,\$02,\$00,\$00	; interruption setup

Example of declaration of module :

#struct	TModul	LE1	;module declaration structure
	USINT	version,	;description version
	USINT	rack,	;rack address
	USINT	address,	;module address in the rack
	UINT	LogAddress,	;logic address
	UINT	LenInputs,	;length of input data zone
	UINT	LenOutputs,	;length of output data zone
	DINT	OffsetInputs,	;position of input data zone
	DINT	OffsetOutputs,	;position of output data zone
	UINT	InitTable	; initialization table index
#module	TModul	LE1 1, 0, 3, 0, 4,	0,offset(r0_p3_DI), 0,
indx	(_r0_p	p3_Table)	

The meanings of the items of the initialization table:

- *ModulID* module type identification code, here 7303
- STAT0, STAT1 data exchange status

	STATO
	0 0 0 0 0 0 0 INT
	.7 .6 .5 .4 .3 .2 .1 .0
	STAT1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	INT - interrupt from module = 1 - the module can initiate interrupt = 0 - the module cannot initiate interrupt
EDI	 activation of operation of the figure of eight of digital inputs = \$80 - the figure of eight of inputs will be operated = \$00 - the figure of eight of inputs will not be operated
EINT	 activation of transmission of flags of interrupt of the figure of eight of digital inputs \$80 - the figure of eight of flags of interrupt will be transmitted \$00 - the figure of eight of flags of interrupt will not be transmitted
FLT	- filtering mode setup
	FLT000AC3AC2AC1AC0.7.6.5.4.3.2.1.0ACn - filter of alternating inputs for a figure of eight n $= 1 - ON$ $= 0 - OFF$
EDG	- short pulse detection
	EDGLP3SP3LP2SP2LP1SP1LP0SP0.7.6.5.4.3.2.1.0SPn - short pulse detection for a figure of eight n = 1 - enabled
	= 0 - disabled
	LPn - detected level of short pulse = 1 - detect short pulses to the level of logic 1 = 0 - detect short pulses to the level of logic 0
MINTR MINTF	 setup of interrupt from leading edges on digital inputs setup of interrupt from trailing edges on digital inputs
	MINTRx IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0 .7 .6 .5 .4 .3 .2 .1 .0

Ν	/INTFx							
	IF7	IF6	IF5	IF4	IF3	IF2	IF1	IF0
	.7	.6	.5	.4	.3	.2	.1	.0

IRn - 0, IFn - 0 - interrupt from digital input DIn prohibited IRn - 1, IFn - 0 - interrupt from leading edge of digital input DIn permitted IRn - 0, IFn - 1 - interrupt from trailing edge of digital input DIn permitted IRn - 1, IFn - 1 - interrupt from both edges of digital input DIn permitted

5.12 MODULE CONNECTION EXAMPLES

In preparation

6. DIGITAL INPUT MODULE IB-7305

The IB-7305 module is designed for scanning of up to 16 digital signals 230 V AC with a common pole, type 1. The module is fitted with a connector allowing the customer to make a choice of several variants selected and ordered separately by the customer (order numbers TXN 102 3x). The connectors are described in the documentation TXV 102 30 or in the Manual for designing TXV 001 08.01.

6.1 BASIC PARAMETERS

Product standard	ČSN EN 61131-2	
Protection class of electrical object ČSN 33 0600	III	
Connection	Removable connector,	
	max. 2,5 mm2 conductor per terminal	
Type of equipment	Built-in	
Coverage (after installation into rack)	IP20 ČSN EN 60529	
Dimensions	137 x 30 x 198 mm	

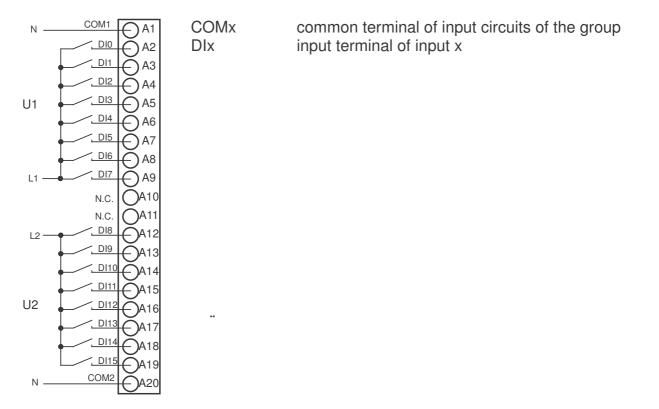
6.2 OPERATIONAL CONDITIONS

Class of ambient influence – ČSN 33 2000-3	Normal			
Operating temperatures range	0 ℃ to + 55 ℃			
Permissible temperatures during transport	-25 ℃ to +70 ℃			
Relative humidity	10 % to 95 % without condensation			
Atmospheric pressure	min. 70 kPa (< 3000 m above see level)			
Degree of pollution - ČSN EN 61131-2	2			
Overvoltage category of installation -	II			
ČSN 33 0420-1				
Working position	Vertical			
Type of operation	Continuous			
Electromagnetic compatibility				
Emissions - ČSN EN 55022*	Class A			
Immunity	Table 16, ČSN EN 61131-2			
Vibration resistance (sinusoidal vibrations)	10 Hz to 57 Hz amplitude 0,075 mm,			
Fc according to ČSN EN 60068-2-6	57 Hz to 150 Hz acceleration 1G			

* This is a product of Class A. In indoor conditions (i.e. such conditions, where using of radio and TV sets can be supposed in a distance of 10 m from the mentioned equipment), the product can cause radio disturbances. It might be required in such cases that the user takes necessary measures to avoid this.

6.3 ELECTRICAL PARAMETERS

Number of inputs	16
Number of inputs in the group	8 (in two groups)
Galvanic isolation from internal circuits	Yes, groups and mutually
Diagnostics	Yes, signalization of energized input
	on module panel


Common pole	Yes	
Type of inputs	Type 1	
Input voltage		
for log. 0 (UL)	Max.	40 V AC
for log. 1 (UH)	Min.	164 V AC
	Тур.	230 V AC
	Max.	253 V AC
Nominal frequency		50 / 60 Hz
Input current at log. 0	Max.	1 mA
Input current at log. 1	Тур.	5 mA
Delay from log. 0 to log. 1	10 ms	
Delay from log. 1 to log. 0	10 ms	
Insulation voltage among inputs and internal cir	3750 V AC	
Insulation voltage among groups of inputs amor	2500 V AC	
other		
Module output loss	Max.	6 W
Module input power taken from system source	Max.	0,8 W

6.4 POWER SUPPLY

The module is fed from the power supply source, which is part of the TC700 system assembly.

6.5 CONNECTION

The module is fitted with a removable connector (order number of connector TXN 102 3x, according to customer's choice). The connection of the connector is illustrated on Fig. 6.1.

Detailed information on connection, proper installation procedure, examples of module connection and principles for increasing resistance and reliability can be found in the handbook for designing TXV 001 08.01.

6.6 **OPERATION**

6.6.1 Module HW configuration

The module is operated, set and diagnosed from the MOSAIC development environment. No setup is made on the module itself.

6.6.2 Putting in operation

After putting the module into the rack and switching power supply on, the module is fully ready for operation and does not require any other settings of its elements.

6.7 **DIAGNOSTICS**

The basic diagnostic system of the module is part of the standard module software. The diagnostic system becomes active after module power supply is on, and works independently from the user.

6.8 INDICATION

On the front panel, each input digital signal is assigned one green indication LED. If this LED is on, it indicates the presence of an input signal on the given terminal. Further, there is a green RUN LED on the front panel. If the RUN LED is on,, the module is in the HALT mode, if the RUN LED is flashing, the module is in the RUN mode.

(IB-7305)
RUN
DI 0 8
19
(2) 10
(3) (11)
4 12
5 13
6 14
7 15
DI 120/230 V AC

6.9 MODULE SETUP

Digital modules

For a trouble-free module operation it is necessary to perform its SW setup within the frame of module declaration. The activation of the operation of digital inputs is carried out by figures of eight. Each figure of eight can be enabled or disabled to be operated. Further, for each figure of eight, detection of short pulses to log. 0 or to log. 1 can be set. Module setup is carried out within the MOSAIC development environment by means of the dialog given below.

N	lastavení modulu 18-7305			×
	Zapnutí přenosu bin. vstupů			
	Zapnuto pro 1. osmici Zapnuto pro 2. osmici			
	Detekce krátkých pulzů			
	detekovat pulz 0 pro 1. osmici	detekovat pulz 1 pro 1. osmici		
	🗌 detekovat pulz 0 pro 2. osmici	🗌 detekovat pulz 1 pro 2. osmici		
	Modul Ize vyjmout za chodu	OK	💢 Zrušit	🝸 Nápověda

Fig. 6.3 Module SW setup

Switching on of the transmission of digital inputs

By enabling the option *Zapnuto pro n. osmici (ON for the n-th figure of eight)*, transmission of current states of the corresponding figure of eight of inputs into the PLC scratchpad is allowed.

If this option is not enabled for a figure of eight of the inputs, the relevant values are not transmitted and they do not appear in the PLC scratchpad. The firts figure of eight corresponds to the inputs DI0 ÷ DI7, the second figure of eight corresponds to the inputs DI8 ÷ DI15.

Short pulse detection

By enabling the option *Detekovat pulz 0 pro n. osmici* (Detect pulse 0 for the n-th figure of eight), the function of short pulse interception to log. 0 is activated. By enabling the option *Detekovat pulz 1 pro n. osmici* (Detect pulse 1 for the n-th figure of eight), the function of short pulse interception to log. 1 is activated.

If we have an input signal, which is mainly in the state of log. 1 and pulses to log. 0 appear on the signal, which are shorter than the longest possible cycle time of the PLC, then these pulses could be lost, since only the states of the inputs at the moment of the I/O scan of the central unit are standardly transmitted to the PLC. If we enable the detection of short pulses for the state of log. 0, then the input module reads the corresponding input much more frequently (approx. 11 ms), executes logical product of read values, which is then sent to the central unit as the resulting value of the input. If the value of log. 0 appears on the input during the cycle, it will be held in the module memory till the next data transmission to the central unit, even if the value of log. 1 is already on the input at the moment of log. 0 and short pulses to log. 1 appear on the signal. We enable the detection of short pulses for the state of log. 1 and the input module then executes the logical product of the read values of the state of log. 1 and the input module then

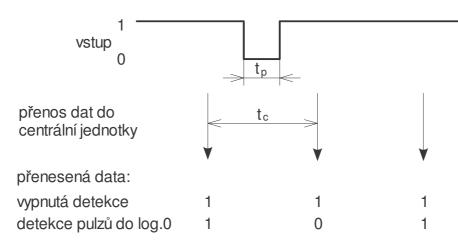


Fig. 6.4 Function of detection of short pulses to log. 0

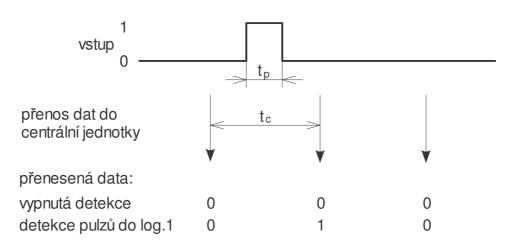


Fig. 6.5 Function of detection of short pulses to log. 1

For the *a*. *m*. figures, the following relation is valid: $t_c > t_p > 11ms$.

6.10 INPUT DATA STRUCTURE

The digital input module IB-7305 operates 16 input digital signals. In the data being transmitted, each input signal is represented by one variable of Boolean type. The structure items of the digital module have symbolic names assigned, beginning with the rack number and position number in the rack. In the column Uplný zápis (Full Write), concrete symbolic name is specified for the given item. If you want to use the data in the user program, you will use either this symbolic name or you will write your symbolic name in the column Alias, that can be used later. Do not use absolute operands in any case, since they can change after a new compilation of the user program. The structure of passed data is obvious from the panel Nastavení V/V (Setting V/V) in the MOSAIC development environment (icon III).

🛟 Nastavení V/V			
IEC 💑 💑 🖧 DEC EX	KP HEX BIN STR 🔢 🛅	1:0	
○ RM 0			
1 PW-7903 2 CP-7002 3	IB-7305		
Struktura dat	Úplný zápis	Alias Svorka	[▲] Abs./délka [●] Hodnota
DI : TBIN_16DI	r0_p3_DI		
-D10 : BOOL	r0_p3_D1~D10	A2	XX30.0 0
-DI1 : BOOL	▶ r0_p3_DI~DI1	A3	XX30.1 0
	r0_p3_DI~DI2	A4	XX30.2 0
	r0_p3_DI~DI3	A5	XX30.3 0
DI4 : BOOL	r0_p3_DI~DI4	A6	XX30.4 0
DI5 : BOOL	r0_p3_DI~DI5	A7	XX30.5 0
— DIG : BOOL	r0_p3_DI~DI6	A8	%×30.6 0
-DI7 : BOOL	r0_p3_DI~DI7	A9	%×30.7 0
	r0_p3_DI~DI8	A12	XX31.0 0
-DI9 : BOOL	r0_p3_DI~DI9	A13	XX31.1 0
—DI10 : BOOL	r0_p3_DI~DI10	A14	XX31.2 0
-DI11 : BOOL	r0_p3_DI~DI11	A15	XX31.3 0
-DI12 : BOOL	r0_p3_DI~DI12	A16	XX31.4 0
-DI13 : BOOL	r0_p3_DI~DI13	A17	XX31.5 0
-DI14 : BOOL	r0_p3_DI~DI14	A18	XX31.6 0
DI15 : BOOL	r0_p3_DI~DI15	A19	XX31.7 0

Fig. 6.6 Data structure of digital module IB-7305

The module data structure is generated by the Mosaic program automatically (according to Setup V/V) to file HWconfig.ST.

TYPE

TBIN_16DI	: STRUCT			
DIO :	BOOL;			
DI1 :	BOOL;			
DI2 :	BOOL;			
DI3 :	BOOL;			
DI4 :	BOOL;			
DI5 :	BOOL;			
DI6 :	BOOL;			
DI7 :	BOOL;			
DI8 :	BOOL;			
DI9 :	BOOL;			
DI10 :	BOOL;			
DI11 :	BOOL;			
DI12 :	BOOL;			
DI13 :	BOOL;			
DI14 :	BOOL;			
DI15 :	BOOL;			
END_STRUC	C;			
END_TYPE				
VAR_GLOBAL				
r0_p3_DI		AT	%X30	:
END_VAR				

TBIN_16DI;

Variable DI

The value passed in variable DIx corresponds to the state of the input signal of the corresponding digital input.

6.11 APPENDIX FOR ADVANCED USERS

The structures given below are typically automatically generated by the MOSAIC development environment (into file *.HWC) and it is not recommended to alter them. If the programmer does not use automatic configuration generation, the description below serves as a sample for manual module configuration.

6.11.1 Initialization data structure

The module requires an initialization table, this is represented in the declaration file of the MOSAIC development environment (*.HWC) by the following description:

<pre>#struct _TTS_Head</pre>	;module heading structure
UINT ModulID,	;module type identification code
USINT Stat0,	;status of data exchange
USINT Stat1	;status of data exchange
<pre>#struct _TTS_IB7305</pre>	;module initialization table structure
_TTS_Head Head,	;table heading
USINT[2] EDI,	;activation of figures of eight of the input
USINT FLT,	;filtering activation - not used
USINT EDG	;short pulse detection activation

Example of declaration of initialization table :

<pre>#table _TTS_IB7305 _r0_p3_Table =</pre>	7305,\$00,\$00, \$80,\$80,	<pre>;table heading ;activation of figures of ;eight of the input</pre>
	\$00 <i>,</i>	;filtering
	\$00	;short pulses

Example of declaration of module :

#struct	TModu	lE1	;module declaration structure
	USINT	version,	;description version
	USINT	rack,	;rack address
	USINT	address,	;module address in the rack
	UINT	LogAddress,	;logic address
	UINT	LenInputs,	;length of input data zone
	UINT	LenOutputs,	;length of output data zone
	DINT	OffsetInputs,	;position of input data zone
	DINT	OffsetOutputs,	;position of output data zone
	UINT	InitTable	; initialization table index
#module	TModu	lE1 1, 0, 3, 0, 2,	0,offset(r0_p3_DI), 0,
indx	(_r0_]	p3_Table)	

The meanings of the items of the initialization table:

ModulID - module type identification code, here 7305

STAT0,STAT1 - data exchange status, here 0

- *EDI* activation of operation of the figure of eight of digital inputs = \$80 - the figure of eight of inputs will be operated = \$00 - the figure of eight of inputs will not be operated
- *FLT* for module IB-7305 not used

EDG - short pulse detection

EDG							
0	0	0	0	LP1	SP1	LP0	SP0
.7	.6	.5	.4	.3	.2	.1	.0

SPn - short pulse detection for a figure of eight n

- = 1 enabled
- = 0 disabled

LPn - detected level of short pulse

- = 1 detect short pulses to the level of logic 1
- = 0 detect short pulses to the level of logic 0

6.12 MODULE CONNECTION EXAMPLES

In preparation

7. DIGITAL OUTPUT MODULE OS-7401

The OS-7401 module is designed for controlling of up to 16 loads 24 V DC / 2 A. The outputs are realized by means of semiconducting switches equipped with current and thermal protection. These protections are part of the module diagnostics. The module is fitted with a connector allowing the customer to make a choice of several variants selected and ordered separately by the customer (order numbers TXN 102 3x). The connectors are described in the documentation TXV 102 30 or in the Manual for designing TXV 001 08.01.

7.1 BASIC PARAMETERS

Product standard	ČSN EN 61131-2
Protection class of electrical object ČSN 33 0600	111
Connection	Removable connector,
	max. 2,5 mm2 conductor per terminal
Type of equipment	Built-in
Coverage (after installation into rack)	IP20 ČSN EN 60529
Dimensions	137 x 30 x 198 mm

7.2 OPERATIONAL CONDITIONS

Class of ambient influence – ČSN 33 2000-3	Normal	
Operating temperatures range	0 ℃ to + 55 ℃	
Permissible temperatures during transport	-25 °C to +70 °C	
Relative humidity	10 % to 95 % without condensation	
Atmospheric pressure	min. 70 kPa (< 3000 m above see level)	
Degree of pollution - ČSN EN 61131-2	2	
Overvoltage category of installation -	II	
ČSN 33 0420-1		
Working position	Vertical	
Type of operation	Continuous	
Electromagnet	ic compatibility	
Emissions - ČSN EN 55022*	Class A	
Immunity	Table 16, ČSN EN 61131-2	
Vibration resistance (sinusoidal vibrations)	10 Hz to 57 Hz amplitude 0,075 mm,	
Fc according to ČSN EN 60068-2-6	57 Hz to 150 Hz acceleration 1G	

* This is a product of Class A. In indoor conditions (i.e. such conditions, where using of radio and TV sets can be supposed in a distance of 10 m from the mentioned equipment), the product can cause radio disturbances. It might be required in such cases that the user takes necessary measures to avoid this.

7.3 **ELECTRICAL PARAMETERS**

Number of outputs		16
Number of outputs in the group		16
Galvanic isolation from internal circuits		Yes
Diagnostics	Yes,	
		signalization of closed output on
		the module panel, signalization of
		output protection equipment in
		module status
Common pole		Yes
Type of outputs		Semocunducting switch,
		protected output
Switching voltage	Max.	30 V DC
	Тур.	24 V DC
	Min.	9,6 V DC
Switching current	Max.	1 A (2 A) ¹⁾
	Min.	mA
Common pole current	Max.	10 A ²⁾
Leakage current (log. 0)	Max.	300 μA
Switch on period of output	Тур.	80 µs
Switch off period of output Typ.		80 µs
Limit values for switching load:		
- for resistance load	Max.	2 A at 24 V DC ¹⁾
- for inductive load DC13 Max.		2 A at 24 V DC ¹⁾
Voltage drop at max. load on closed output	Max.	0,15 V
Switching rate without load	Max.	switchings / min
Switching rate with nominal load	Max.	switchings / min
Polarity inversion protection ³⁾	Yes	
Short-circuit protection		Internal
- limitation of initial peak current	Тур.	7,5 A
- disconnecting period of initial peak current	Тур.	4 ms
- limitation of short-circuit current	Тур.	6,5 A
Overload protection		Yes
- current limitation	Тур.	6,5 A
Inductive load treatment		External
	RC member, varistor, diode	
External supply voltage of module output circuits	24 V DC	
Max. consumption from external source (module in circuits)	nternal	350 mA
Insulation voltage among inputs and internal circui	ts	500 V DC
Insulation voltage among groups of inputs among		500 V DC
	other	
Module output lossMax.Module input power taken from system sourceMax.		10 W
Module input power taken from system source	0,8 W	

1) Maximum added-up current of four outputs (DO0+3, DO4+7, DO8+11, DO12+15) is 5A. If the added-up current of the four corresponding outputs has a higher value, limitation to the specified value takes place.

2) Valid for each terminal UDO1 on the module individually. For full utilization of max. switched currents it is necessary to interconnect the UDO1 terminals. The circuit will be put in inactive state, the loads will be closed and the current will flow through the protection

3) diode of the circuit.

7.4 POWER SUPPLY

The module is fed from the power supply source, which is part of the TC700 system assembly.

7.5 CONNECTION

The module is fitted with a connector (order number of connector TXN 102 3x, according to customer's choice). The connection of the connector is illustrated on Fig. 7.1.

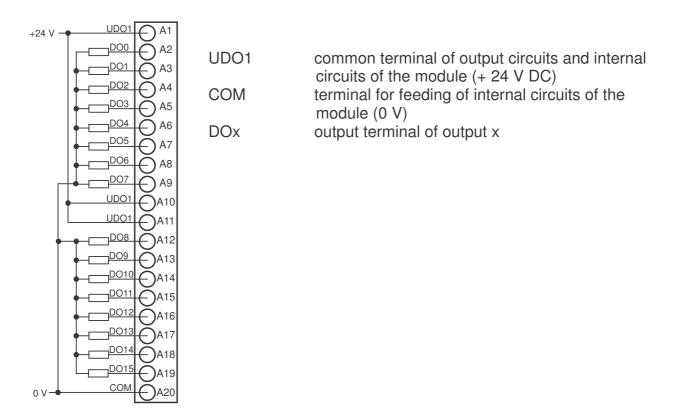


Fig. 7.1 Connection of terminal board of module OS-7401

Detailed information on connection, proper installation procedure, examples of module connection and principles for increasing resistance and reliability can be found in the handbook for designing TXV 001 08.01.

7.6 **OPERATION**

7.6.1 Module HW configuration

The module is operated, set and diagnosed from the MOSAIC development environment. No setup is made on the module itself.

7.6.2 Putting in operation

After putting the module into the rack and switching power supply on, the module is fully ready for operation and does not require any other settings of its elements.

7.7 DIAGNOSTICS

The basic diagnostic system of the module is part of the standard module software. The diagnostic system becomes active after module power supply is on, and works independently from the user.

7.8 INDICATION

On the front panel of the module, one green indication LED is assigned to each output digital signal. Further, there is a green RUN LED on the front panel. If the LED is on, the module is in the HALT mode, if the RUN LED is flashing, the module is in the RUN mode. Additionally, there is a yellow BLK LED on the front panel and when this is on, blocking of digital outputs is indicated.

OS-7401
RUN OFF
DO 🚺 8
(1) (9)
(2) 10
3 11
4 (12)
5 (13)
6 14
7 15
DO 24 V DC/1 A

Fig. 7.2 Indication panel of module OS-7401

7.9 MODULE SETUP

For a trouble-free module operation it is necessary to perform its SW setup within the frame of module declaration. The activation of the operation of digital outputs is carried out by figures of eight. Each figure of eight can be enabled or disabled individually. Module setup is carried out within the MOSAIC development environment by means of the dialog given below.

Nastavení modulu OS-7401		×
	🗖 Zapnutí přenosu statusu	
Zapnutí přenosu bin. výstupů Zapnuto pro 1. osmici Zapnuto pro 2. osmici		
🗌 Modul Ize vyjmout za chodu	OK Xrušt	🕐 Nápověda

Fig. 7.3 Module SW setup

Switching on of transmission of digital outputs

By enabling the option Zapnuto pro n. osmici (ON for the n-th figure of eight), transmission of current states of the corresponding figure of eight of outputs from the PLC scratchpad to the module is allowed. If this option is not enabled for a figure of eight of outputs, the relevant values will not be transmitted. The first figure of eight corresponds to the outputs DO0 \div DO7, the second figure of eight corresponds to the outputs DO8 \div DO15.

Switching on of transmission of status

By enabling of this option, we allow the transmission of the status byte of the module to the PLC scratchpad. The status contains information on overload of the digital outputs. If this option is not enabled, the status is not transmitted and it does not appear in the PLC scratchpad. The overload is indicated in the status for groups of digital outputs by 4.

7.10 TRANSMITTED DATA STRUCTURE

The digital output module OS-7401 operates 16 output digital signals. In the data being transmitted, each output signal is represented by one variable of Boolean type. Further, the periphery provides a status byte with the information on overload of digital outputs (by figures of four). The structure items of the digital module have symbolic names assigned, beginning with the rack number and position number in the rack. In the column <u>*Úplný zápis*</u> (*Full Write*), concrete symbolic name is specified for the given item. If you want to use the data in the user program, you will use either this symbolic name or you will write your symbolic name in the column <u>*Alias*</u>, that can be used later. Do not use absolute operands in any case, since they can change after a new compilation of the user program. The structure of passed data is obvious from the panel <u>*Nastavení V/V*</u> (Setting V/V) in the MOSAIC development environment (icon <u>III</u>).

Nastavení V/V IEC 💑 💑 💑 DEC	EXP HEX BIN STR 🔢	2:0		
O RM 0				
1 PW-7903 2 CP-7002	3 0S-7401			
Struktura dat	Úplný zápis		ivorka ⁴ Abs./délka	. [¶] Hodnota
∃Stat : TBIN_4Stat	r0_p3_Stat			
OVRO : BOOL	嶎 r0_p3_Stat~OVR0		% X30.0	0
0VR1 : BOOL	r0_p3_Stat~OVR1		% X30.1	0
0VR2 : BOOL	r0_p3_Stat~OVR2		% X30.2	0
- 0VR3 : BOOL	r0_p3_Stat~OVR3		% X30.3	0
∃ DO : TBIN_16DO	r0_p3_D0			
- DOO : BOOL	🥂 r0_p3_D0~D00	1	A2 %Y4.0	0
-DO1 : BOOL	📑 r0_p3_D0~D01	1	A3 %Y4.1	0
- DO2 : BOOL	🦻 r0_p3_D0~D02	1	\4 %Y4.2	0
-DO3 : BOOL	📑 r0_p3_D0~D03	1	∿5 %Y4.3	0
-DO4 : BOOL	r0_p3_D0~D04	1	46 %Y4.4	0
- DO5 : BOOL	r0_p3_D0~D05	1	47 %Y4.5	0
	r0_p3_D0~D06		48 %Y4.6	0
- D07 : BOOL	r0_p3_D0~D07	1	49 %Y4.7	0
	🥂 r0_p3_D0~D08	1	A12 %Y5.0	0
	r0_p3_D0~D09	1	A13 %Y5.1	0
-D010 : BOOL	r0_p3_D0~D010		A14 %Y5.2	0
- D011 : BOOL	🥵 r0_p3_D0~D011	1	A15 %Y5.3	0
-D012 : BOOL	r0_p3_D0~D012	1	A16 %Y5.4	0

Fig. 7.4 Data structure of digital module OS-7401

The module data structure is generated by the Mosaic program automatically (according to Setup V/V) to file HWconfig.ST.

TYPE

TBIN_16D0 : STRUCT DOO : BOOL; D01 : BOOL; DO2 : BOOL; DO3 : BOOL; : BOOL; DO4 : BOOL; D05 DO6 : BOOL; D07 : BOOL; D08 : BOOL; D09 : BOOL; DO10 : BOOL; DO11 : BOOL; DO12 : BOOL; DO13 : BOOL; DO14 : BOOL; D015 : BOOL; END_STRUCT; TBIN_4Stat : STRUCT OVR0 : BOOL; OVR1 : BOOL; OVR2 : BOOL; OVR3 : BOOL; END_STRUCT;

END_TYPE

VAR_GLOBAL		
r0_p3_Stat	AT %X30	: TBIN_4Stat;
r0_p3_D0	AT %Y4	: TBIN_16DO;
END_VAR		

Variable DO

The value passed in variable DOx corresponds to the state of the output signal of the corresponding digital output.

Variable STAT

In variable STAT, the module provides information on overload of the digital outputs. The overload is diagnosed for 4 groups by 4 outputs.

STAT

01/11							
0	0	0	0	OVR3	OVR2	OVR1	OVR0
.7	.6	.5	.4	.3	.2	.1	.0

OVR0 - flag of overload for the group of digital outputs DO0 ÷ DO3 OVR1 - flag of overload for the group of digital outputs DO4 ÷ DO7

OVRI - flag of overload for the group of digital outputs $DO4 \div DO7$

OVR2 - flag of overload for the group of digital outputs DO8 ÷ DO11

 $\mathsf{OVR3}$ - flag of overload for the group of digital outputs $\mathsf{DO12} \div \mathsf{DO15}$

= 1 - one or more outputs are overloaded

= 0 - no output of the group is overloaded

7.11 APPENDIX FOR ADVANCED USERS

The structures given below are typically automatically generated by the MOSAIC development environment (into file *.HWC) and it is not recommended to alter them. If the programmer does not use automatic configuration generation, the description below serves as a sample for manual module configuration.

7.11.1 Initialization data structure

The module requires an initialization table, this is represented in the declaration file of the MOSAIC development environment (*.HWC) by the following description:

<pre>#struct _TTS_Head</pre>	;module heading structure
UINT ModulID,	;module type identification code
USINT Stat0,	;status of data exchange
USINT Stat1	;status of data exchange
<pre>#struct _TTS_OS7401 _TTS_Head Head, USINT ESO, USINT[2] EDO</pre>	;module initialization table structure ;heading ;status activation ;activation of figures of eight of outputs

Example of declaration of initialization table :

<pre>#table _TTS_OS7401 _r0_p3_Table =</pre>	7401,\$00,\$00,	;table heading
	\$80,	;status activation
	\$80,\$80	;activation of figures of
		;eight of outputs

Example of declaration of module :

#struct	TModu	LE1	;module declaration structure
	USINT	version,	;description version
	USINT	rack,	;rack address
	USINT	address,	;module address in the rack
	UINT	LogAddress,	;logic address
	UINT	LenInputs,	;length of input data zone
	UINT	LenOutputs,	;length of output data zone
	DINT	OffsetInputs,	;position of input data zone
	DINT	OffsetOutputs,	;position of output data zone
	UINT	InitTable	; initialization table index
#module	TModul	LE1 1, 0, 3, 0, 1,	2,offset(r0_p3_Stat),offset(r0_p3_D0),

_indx (_r0_p3_Table)

The meanings of the items of the initialization table:

ModulID	- module type identification code, here 7401
STAT0,STAT	1 - data exchange status, here 0
ESO	 activation of transmission of status byte of module = \$80 - status will be transmitted = \$00 - status will not be transmitted
EDO	 activation of operation of the figure of eight of digital outputs \$80 - the figure of eight of outputs will be operated

= \$00 - the figure of eight of outputs will not be operated

7.12 MODULE CONNECTION EXAMPLES

Example 1 The following actuators are connected to the module: - 4 external relays

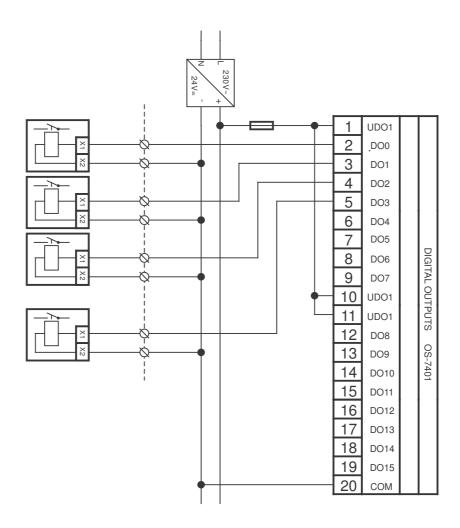


Fig. 7.5 Connector of module OS-7401 (connection example)

Notes:

- 1. Signal UDO1 is led to more terminals due to current load (its distribution). To reach the full performance of the module, it is necessary to connect all terminals!
- 2. Signal COM (terminal 20) is necessary for the function of the output circuits (semiconducting switches) of the module

8. DIGITAL OUTPUT MODULE OS-7402

The OS-7402 module is designed for controlling of up to 32 loads 24 V DC / 0,5 A. The outputs are realized by semiconducting switches equipped with current and thermal protection. These protections are part of the module diagnostics. The module is fitted with two connectors (set TXN 102 40, they are ordered separately) with screwless terminals, always 16 outputs are terminated on them. The module is equipped with intelligent output circuits that require connecting of external supply voltage of 24 V DC.

8.1 BASIC PARAMETERS

Product standard	ČSN EN 61131-2	
Protection class of electrical object ČSN 33 0600	III	
Connection	Removable connectors,	
	max. 1,0 mm ² conductor per terminal	
Type of equipment	Built-in	
Coverage (after installation into rack)	IP20 ČSN EN 60529	
Dimensions	137 x 30 x 198 mm	

8.2 OPERATIONAL CONDITIONS

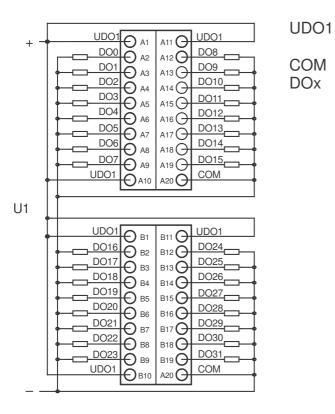
Class of ambient influence – ČSN 33 2000-3	Normal	
Operating temperatures range	0 ℃ to + 55 ℃	
Permissible temperatures during transport	-25 ℃ to +70 ℃	
Relative humidity	10 % to 95 % without condensation	
Atmospheric pressure	min. 70 kPa (< 3000 m above see level)	
Degree of pollution - ČSN EN 61131-2	2	
Overvoltage category of installation -	II	
ČSN 33 0420-1		
Working position	Vertical	
Type of operation	Continuous	
Electromagne	etic compatibility	
Emissions - ČSN EN 55022*	Class A	
Immunity	Table 16, ČSN EN 61131-2	
Vibration resistance (sinusoidal vibrations)	10 Hz to 57 Hz amplitude 0,075 mm,	
Fc according to ČSN EN 60068-2-6	57 Hz to 150 Hz acceleration 1G	

* This is a product of Class A. In indoor conditions (i.e. such conditions, where using of radio and TV sets can be supposed in a distance of 10 m from the mentioned equipment), the product can cause radio disturbances. It might be required in such cases that the user takes necessary measures to avoid this.

8.3 ELECTRICAL PARAMETERS

Number of outputs		32	
Number of outputs in the group		32	
Galvanic isolation from internal circuits		Yes	
Diagnostics		Yes, signalization of closed	
°		contact on module panel	
Common pole		Yes	
Type of outputs		Semiconducting switch,	
		protected output	
Switching voltage	Max.	30 V DC	
	Тур.	24 V DC	
	Min.	11 V DC	
Switching current	Max.	0,5 A	
Common pole current	Max.	16 A ¹⁾	
Leakage current (log. 0)	Max.	300 μA	
Switch on period of output	Тур.	400 µs	
Switch off period of output	Тур.	400 µs	
Limit values for switching load:		•	
- for resistance load	Max.	0,5 A at 24 V DC	
- for inductive load DC13	Max.	0,5 A at 24 V DC	
Voltage drop at max. load on closed output	Max.	0,18 V	
Switching rate without load	Max.	1200 switchings / min	
Switching rate with nominal load	Max.	300 switchings / min	
Polarity inversion protection ²⁾		Yes	
Short-circuit protection		Internal	
- limitation of initial peak current	Тур.	1,4 A	
- limitation of short-circuit current	Тур.	1,1 A	
Overload protection		Yes, thermal	
- current limitation		output OFF	
Inductive load treatment		external	
		RC member, varistor, diode	
		(DC)	
External supply voltage of module output circuits	24 V DC		
Max. consumption from external source (internal circu	its)	350 mA	
Insulation voltage among inputs and internal circuits		500 V DC	
Module output loss	Max.	10 W	
Module input power taken from system source	Max.	1,75 W	

¹⁾ Valid in case of mutual interconnection of all UDO1 terminals on the module.


²⁾ The circuit will be put in inactive state, the loads will be closed and the current will flow through the protection diode of the circuit.

8.4 **POWER SUPPLY**

The module is fed from the power supply source, which is part of the TC700 system assembly.

8.5 CONNECTION

The module is fitted with two identical screwless connectors (order number of connector set TXN 102 40). The connection of connectors is illustrated on Fig. 8.1.

common terminal of output circuits of the module (+ 24 V DC) terminal for feeding of output circuits output terminal of output x

Fig. 8.1 Connection of terminal board of module OS-7402

Detailed information on connection, proper installation procedure, examples of module connection and principles for increasing resistance and reliability can be found in the handbook for designing TXV 001 08.01.

8.6 **OPERATION**

8.6.1 Module HW configuration

The module is operated, set and diagnosed from the MOSAIC development environment. No setup is made on the module itself.

8.6.2 Putting in operation

After putting the module into the rack and switching power supply on, the module is fully ready for operation and does not require any other settings of its elements.

8.7 DIAGNOSTICS

The basic diagnostic system of the module is part of the standard module software. The diagnostic system becomes active after module power supply is on, and works independently from the user.

8.8 INDICATION

On the front panel of the module, one green indication LED is assigned to each output digital signal. Further, there is a green RUN LED on the front panel. If the LED is on, the module is in the HALT mode, if the RUN LED is flashing, the module is in the RUN mode. Additionally, there is a yellow BLK LED on the front panel and when this is on, blocking of digital outputs is indicated.

(OS-7402)
RUN OFF
DO 0 8 16 24
1 9 17 25
2 10 18 26
3 11 19 27
4 12 20 28
5 13 21 29
6 14 22 30
7 15 23 31
DO 24 V DC/0,5 A

Fig. 8.2 Indication panel of module OS-7402

8.9 MODULE SETUP

For a trouble-free module operation it is necessary to perform its SW setup within the frame of module declaration. The activation of the operation of digital outputs is carried out by figures of eight. Each figure of eight can be enabled or disabled individually. Module setup is carried out within the MOSAIC development environment by means of the dialog given below.

Nastavení modulu OS-7402		X
	🗖 Zapnutí přenosu statusu	
Zapnutí přenosu bin. výstupů Zapnuto pro 1. osmici Zapnuto pro 2. osmici Zapnuto pro 3. osmici Zapnuto pro 4. osmici		
🗌 Modul Ize vyjmout za chodu	🚺 🔨 OK 🕺 Zrušit 🍞 Nápověd	la

Fig. 8.3 Module SW setup

Switching on of transmission of digital outputs

By enabling the option Zapnuto pro n. osmici (ON for the n-th figure of eight), transmission of current states of the corresponding figure of eight of outputs from the PLC scratchpad to the module is allowed. If this option is not enabled for a figure of eight of outputs, the relevant values will not be transmitted. The first figure of eight corresponds to the outputs DO0 \div DO7, the second figure of eight corresponds to the outputs DO16 \div DO23 and the fourth figure of eight corresponds to the outputs DO16 \div DO23 and the fourth figure of eight corresponds to the outputs DO24 \div DO31.

Switching on of transmission of status

By enabling of this option, we allow the transmission of the status byte of the module to the PLC scratchpad. The status contains information on overload of the digital outputs. If this option is not enabled, the status is not transmitted and it does not appear in the PLC scratchpad. The overload is indicated in the status for groups of digital outputs by 16.

8.10 TRANSMITTED DATA STRUCTURE

The digital output module OS-7402 operates 16 output digital signals. In the data being transmitted, each output signal is represented by one variable of Boolean type. Further, the periphery provides a status byte with the information on overload of digital outputs (by figures of sixteen). The structure items of the digital module have symbolic names assigned, beginning with the rack number and position number in the rack. In the column <u>*Úplný zápis*</u> (*Full Write*), concrete symbolic name is specified for the given item. If you want to use the data in the user program, you will use either this symbolic name or you will write your symbolic name in the column <u>*Alias*</u>, that can be used later. Do not use absolute operands in any case, since they can change after a new compilation of the user program. The structure of passed data is obvious from the panel <u>*Nastavení V/V*</u> (Setting V/V) in the MOSAIC development environment (icon <u>III</u>).

IEC 💑 💑 💑 DE	C EXP HEX BIN STR	16 🖻 2	2:1		
<mark>⊃ RM 0</mark>					
L PW-7903 2 CP-7002	3 OS-7402				
Struktura dat	Úplný zápis	Alias	Svorka	Abs./délka	Hodnota
Stat : TBIN_2Stat	r0_p3_Stat				
OVRO : BOOL	🗛 r0_p3_Stat~OVR0			%×30.0	0
OVR1 : BOOL	💫 r0_p3_Stat~OVR1			% X30.1	0
DO : TBIN_32DO	r0_p3_D0				
- DOO : BOOL	r0_p3_D0~D00		A2	%Y4.0	0
-DO1 : BOOL	r0_p3_D0~D01		A3	%Y4.1	0
-DO2 : BOOL	r0_p3_D0~D02		A4	%Y4.2	0
-DO3 : BOOL	r0_p3_D0~D03		A5	%Y4.3	0
-DO4 : BOOL	r0_p3_D0~D04		A6	%Y4.4	0
- DO5 : BOOL	r0_p3_D0~D05		A7	%Y4.5	0
	0_p3_D0~D06 🖻		A8	%Y4.6	0
	r0_p3_D0~D07		A9	%Y4.7	0
	r0_p3_D0~D08		A12	%Y5.0	0
-DO9 : BOOL	r0_p3_D0~D09		A13	%Y5.1	0
-D010 : BOOL	r0_p3_D0~D010		A14	%Y5.2	0
	r0_p3_D0~D011		A15	%Y5.3	0
	r0_p3_D0~D012		A16	%Y5.4	0
	r0_p3_D0~D013		A17	%Y5.5	0
-D014 : BOOL	r0_p3_D0~D014		A18	%Y5.6	0

Fig. 8.4 Data structure of digital module OS-7402

The module data structure is generated by the Mosaic program automatically (according to Setup V/V) to file HWconfig.ST.

TYPE

TBIN_32DO : STRUCT

D00	:	BOOL;
D01	:	BOOL;
D02	:	BOOL;
DO3	:	BOOL;
DO4	:	BOOL;
D05	:	BOOL;
D06	:	BOOL;
D07	:	BOOL;
D08	:	BOOL;
D09	:	BOOL;
D010		: BOOL;
D011		: BOOL;
D012		: BOOL;
D013		: BOOL;
D014		: BOOL;
D015		: BOOL;
D016		: BOOL;
D017		: BOOL;
D018		: BOOL;
D019		: BOOL;
D020		: BOOL;
D021		: BOOL;
D022		: BOOL;
D023		: BOOL;

DO24 : BOOL; DO25 : BOOL; DO26 : BOOL; DO27 : BOOL; DO28 : BOOL; DO29 : BOOL; DO30 : BOOL; DO31 : BOOL; END_STRUCT; **TBIN 2Stat : STRUCT** OVR0 : BOOL; OVR1 : BOOL; END STRUCT; END_TYPE VAR GLOBAL r0_p3_Stat AT %X30 : TBIN_2Stat; r0_p3_D0 **AT** %Y4 : **TBIN_32DO**; END VAR

Variable DO

The value passed in variable DOx corresponds to the state of the output signal of the corresponding output.

Variable STAT

In variable STAT, the module provides information on overload of digital outputs. The overload is diagnosed for 2 groups by 16 outputs.

STAT							
0	0	0	0	0	0	OVR1	OVR0
.7	.6	.5	.4	.3	.2	.1	.0

OVR0 - flag of overload for the group of digital outputs DO0 \div DO15 OVR1 - flag of overload for the group of digital outputs DO16 \div DO31

= 1 - one or more outputs are overloaded

= 0 - no output of the group is overloaded

8.11 APPENDIX FOR ADVANCED USERS

The structures given below are typically automatically generated by the MOSAIC development environment (into file *.HWC) and it is not recommended to alter them. If the programmer does not use automatic configuration generation, the description below serves as a sample for manual module configuration.

8.11.1 Initialization data structure

The module requires an initialization table, this is represented in the declaration file of the MOSAIC development environment (*.HWC) by the following description:

<pre>#struct _TTS_Head</pre>	;module heading structure
UINT ModulID,	;module type identification code
USINT Stat0,	;status of data exchange
USINT Stat1	;status of data exchange
<pre>#struct _TTS_OS7402 _TTS_Head Head, USINT ESO, USINT[4] EDO</pre>	;module initialization table structure ;heading ;status activation ;activation of figures of eight of outputs

Example of declaration of initialization table :

```
#table _TTS_OS7402 _r0_p3_Table = 7402,$00,$00, ;table heading
    $80, ;status activation
    $80,$80,$80,$80;activation of figures of
    ;eight of outputs
```

Example of declaration of module :

#struct	TModu.	LE1	;module declaration structure
	USINT	version,	;description version
	USINT	rack,	;rack address
	USINT	address,	;module address in the rack
	UINT	LogAddress,	;logic address
	UINT	LenInputs,	;length of input data zone
	UINT	LenOutputs,	;length of output data zone
	DINT	OffsetInputs,	;position of input data zone
	DINT	OffsetOutputs,	;position of output data zone
	UINT	InitTable	; initialization table index

```
#module TModulE1 1, 0, 3, 0, 1, 4, __offset(r0_p3_Stat), __offset(r0_p3_D0),
__indx (_r0_p3_Table)
```

The meanings of the items of the initialization table:

ModulID - module type identification code, here 7402

STAT0, STAT1 - data exchange status, here 0

ESO	 activation of transmission of status byte of module = \$80 - status will be transmitted = \$00 - status will not be transmitted
EDO	 activation of operation of the figure of eight of digital outputs \$80 - the figure of eight of outputs will be operated

= \$00 - the figure of eight of outputs will not be operated

8.12 MODULE CONNECTION EXAMPLES

Example 1 The following actuators are connected to the module: - 4 external relays

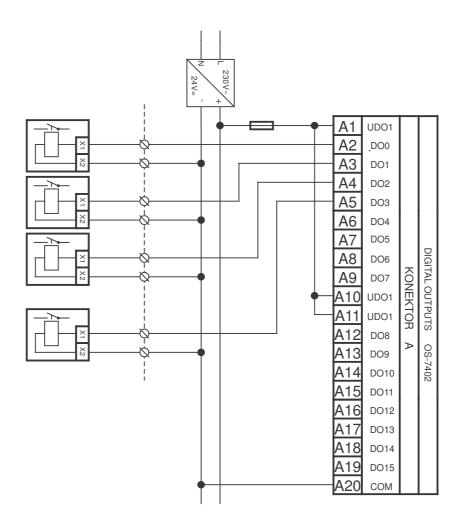


Fig. 8.5 Connector of module OS-7402 (connection example)

Notes:

- 1. Signal UDO1 is led to more terminals due to current load (its distribution). To reach the full performance of the module, it is necessary to connect all terminals!
- 2. Signal COM (terminal 20) is necessary for the function of the output circuits (semiconducting switches) of the module.
- 3. Also connector B is connected identically (outputs DO16 to DO31).

9. DIGITAL OUTPUT MODULE OS-7405

The OS-7405 module is equipped with 16 outputs fitted with semiconducting relays (SSR) for switching of alternating signals of up to 230 V AC / 0,25 A. The module is fitted with a connector allowing the customer to make a choice of several variants selected and ordered separately by the customer (order numbers TXN 102 3x). The connectors are described in the documentation TXV 102 30 or in the Manual for designing TXV 001 08.01.

9.1 BASIC PARAMETERS

Product standard	ČSN EN 61131-2
Protection class of electrical object ČSN 33 0600	II
Connection	Removable connector,
	max. 2,5 mm2 conductor per terminal
Type of equipment	Built-in
Coverage (after installation into rack)	IP20 ČSN EN 60529
Dimensions	137 x 30 x 198 mm

9.2 OPERATIONAL CONDITIONS

Class of ambient influence - ČSN 33 2000-3	Normal		
Operating temperatures range	0 ℃ to + 55 ℃		
Permissible temperatures during transport	-25 ℃ to +70 ℃		
Relative humidity	10 % to 95 % without condensation		
Atmospheric pressure	Min. 70 kPa (< 3000 m above see level)		
Degree of pollution - ČSN EN 61131-2	2		
Overvoltage category of installation -	II		
ČSN 33 0420-1			
Working position	Vertical		
Type of operation	Continuous		
Electromagne	etic compatibility		
Emissions - ČSN EN 55022*	Class A		
Immunity	Table 16, ČSN EN 61131-2		
Vibration resistance (sinusoidal vibrations)	10 Hz to 57 Hz amplitude 0,075 mm,		
Fc according to ČSN EN 60068-2-6	57 Hz to 150 Hz acceleration 1G		

* This is a product of Class A. In indoor conditions (i.e. such conditions, where using of radio and TV sets can be supposed in a distance of 10 m from the mentioned equipment), the product can cause radio disturbances. It might be required in such cases that the user takes necessary measures to avoid this.

9.3 ELECTRICAL PARAMETERS

Number of outputs	16
Number of outputs in the group	4 (in four groups)
Galvanic isolation from internal circuits	Yes, groups and mutually
Diagnostics	Yes, signalization of closed output
	on the module panel

Common pole		Yes
Type of outputs		SSR, switching at zero,
		unprotected output
Type of contact		make contact
Switching voltage	Max.	250 V AC
	Min.	20 V AC
Switching current	Max.	0,25 A
	Min.	5 mA
Short time overload capacity of output	Max.	1 A
Common pole current	Max.	4 A
Switch on period of contact	Max.	10 ms
Switch off period of contact Max.		10 ms
Limit values for switching load:		
- for resistance load	Max.	0,25 A at 230 V AC
- for inductive load AC15	Max.	0,25 A at 230 V AC
Switching rate without load	Max.	400 switchings / s
Switching rate with nominal load	Max.	100 switchings / s
Short-circuit protection		External
Inductive load treatment		External
		RC member, varistor
Insulation voltage among inputs and internal circui	ts	3750 V AC
Insulation voltage among groups of inputs among	each	1000 V AC
other		
Module output loss	Max.	5 W
Module input power taken from system source	Max.	1,8 W

9.4 **POWER SUPPLY**

The module is fed from the power supply source, which is part of the TC700 system assembly.

9.5 CONNECTION

The module is fitted with a connector (order number of connector TXN 102 3x, according to customer's choice). The connection of the connector is illustrated on Fig. 9.1.

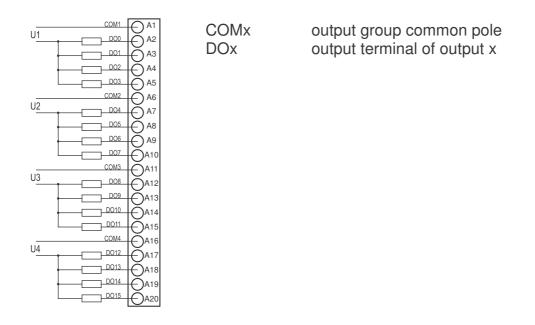


Fig. 9.1 Connection of terminal board of module OS-7405

Detailed information on connection, proper installation procedure, examples of module connection and principles for increasing resistance and reliability can be found in the handbook for designing TXV 001 08.01.

9.6 **OPERATION**

9.6.1 Module HW configuration

The module is operated, set and diagnosed from the MOSAIC development environment. No setup is made on the module itself.

9.6.2 Putting in operation

After putting the module into the rack and switching power supply on, the module is fully ready for operation and does not require any other settings of its elements.

9.7 DIAGNOSTICS

The basic diagnostic system of the module is part of the standard module software. The diagnostic system becomes active after module power supply is on, and works independently from the user.

9.8 INDICATION

On the front panel of the module, one green indication LED is assigned to each output digital signal. Further, there is a green RUN LED on the front panel. If the LED is on, the module is in the HALT mode, if the RUN LED is flashing, the module is in the RUN mode. Additionally, there

is a yellow BLK LED on the front panel and when this is on, blocking of digital outputs is indicated.

Fig. 9.2 Indication panel of module OS-7405

9.9 MODULE SETUP

For a trouble-free module operation it is necessary to perform its SW setup within the frame of module declaration. The activation of the operation of digital outputs is carried out by figures of eight. Each figure of eight can be enabled or disabled individually. Module setup is carried out within the MOSAIC development environment by means of the dialog given below.

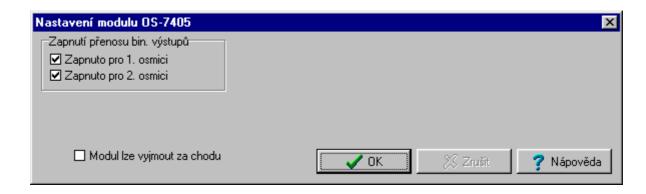


Fig. 9.3 Module SW setup

Switching on of transmission of digital outputs

By enabling the option Zapnuto pro n. osmici (ON for the n-th figure of eight), transmission of current states of the corresponding figure of eight of outputs from the PLC scratchpad to the module is allowed. If this option is not enabled for a figure of eight of outputs, the relevant values will not be transmitted. The first figure of eight corresponds to the outputs DO0 \div DO7, the second figure of eight corresponds to the outputs DO8 \div DO15.

9.10 TRANSMITTED DATA STRUCTURE

The digital output module OS-7405 operates 16 output digital signals. In the data being transmitted, each output signal is represented by one variable of Boolean type. The structure items of the digital module have symbolic names assigned, beginning with the rack number and position number in the rack. In the column Uplný zápis (Full Write), concrete symbolic name is specified for the given item. If you want to use the data in the user program, you will use either this symbolic name or you will write your symbolic name in the column Alias, that can be used later. Do not use absolute operands in any case, since they can change after a new compilation of the user program. The structure of passed data is obvious from the panel Nastavení V/V (Setting V/V) in the MOSAIC development environment (icon III).

🛟 Nastavení V/V					
IEC 💑 💑 💑 D	EC EXP HEX BIN STR 🔢 🕻	1:	: 0		
○ RM 0					
1 PW-7903 2 CP-700	2 3 0S-7405				
Struktura dat	Úplný zápis	Alias	■ Svorka	[¶] Abs./délka [¶]	Hodnota
■ DO : TBIN_16D0	r0_p3_D0				
— DOO : BOOL	10_p3_D0~D00		A2	%Y4.0	0
	📑 r0_p3_D0~D01		A3	%Y4.1	0
- DO2 : BOOL	📑 r0_p3_D0~D02		A4	%Y4.2	0
- DO3 : BOOL	📑 r0_p3_D0~D03		A5	%Y4.3	0
-DO4 : BOOL	📑 r0_p3_D0~D04		A7	%Y4.4	0
- DO5 : BOOL	📑 r0_p3_D0~D05		A8	%Y4.5	0
-DO6 : BOOL	📑 r0_p3_D0~D06		A9	%Y4.6	0
- DO7 : BOOL	📑 r0_p3_D0~D07		A10	%Y4.7	0
-DO8 : BOOL	📑 r0_p3_D0~D08		A12	%Y5.0	0
-DO9 : BOOL	10_p3_D0~D09		A13	%Y5.1	0
-DO10 : BOOL	📑 r0_p3_D0~D010		A14	%Y5.2	0
-D011 : B00L	📑 r0_p3_D0~D011		A15	%Y5.3	0
-D012 : BOOL	📑 r0_p3_D0~D012		A17	%Y5.4	0
-D013 : BOOL	📑 r0_p3_D0~D013		A18	%Y5.5	0
-D014 : BOOL	📑 r0_p3_D0~D014		A19	%Y5.6	0
D015 : BOOL	📑 r0_p3_D0~D015		A20	%Y5.7	0

Fig. 9.4 Data structure of digital module OS-7405

The module data structure is generated by the Mosaic program automatically (according to Setup V/V) to file HWconfig.ST.

TYPE

TBIN_	16D0	0 :	S'	TRUCT
DOC) :	BC	DOL	;
D01	. :	BC	DOL	;
D02	:	BC	DOL	;
DO3	3 :	BC	OL	;
DO4	:	BC	DOL	;
DO5	; ;	BC	DOL	;
DOG	5 :	BC	OL	;
DO7	':	BC	DOL	;

D08 : BOOL; D09 : BOOL; D010 : BOOL; D011 : BOOL; D012 : BOOL; D013 : BOOL; D014 : BOOL; D015 : BOOL; END_STRUCT; END_TYPE VAR_GLOBAL r0_p3_D0 AT %Y4 : TBIN_16DO; END_VAR

Variable DO

The value passed in variable DOx corresponds to the state of the output signal of the corresponding output.

9.11 APPENDIX FOR ADVANCED USERS

The structures given below are typically automatically generated by the MOSAIC development environment (into file *.HWC) and it is not recommended to alter them. If the programmer does not use automatic configuration generation, the description below serves as a sample for manual module configuration.

9.11.1 Initialization data structure

The module requires an initialization table, this is represented in the declaration file of the MOSAIC development environment (*.HWC) by the following description:

<pre>#struct _TTS_Head</pre>	;module heading structure
UINT ModulID,	;module type identification code
USINT Stat0,	;status of data exchange
USINT Stat1	;status of data exchange
<pre>#struct _TTS_OS7405 _TTS_Head Head, USINT[2] EDO</pre>	;module initialization table structure ;heading ;activation of figures of eight of outputs

Example of declaration of initialization table :

<pre>#table _TTS_OS7405 _</pre>	r0_p3_Table =	7405,\$00,\$00,	;table heading
		\$80,\$80	;activation of figures
			; of eight of outputs

Example of declaration of module :

#struct TModulE1		;module declaration structure		
	USINT version,	;description version		
	USINT rack,	;rack address		
	USINT address,	;module address in the rack		
	UINT LogAddress,	;logic address		
	UINT LenInputs,	;length of input data zone		

DINT DINT	LenOutputs, OffsetInputs, OffsetOutputs, InitTable		;length of output data zone ;position of input data zone ;position of output data zone ;initialization table index		
	lE1 1, 0, 3, 0, p3_Table)	0,	2, 0,offset(r0_p3_DO),		

The meanings of the items of the initialization table:

- *ModulID* module type identification code, here 7405
- STAT0, STAT1 data exchange status, here 0
- *EDO* activation of operation of the figure of eight of digital outputs = \$80 - the figure of eight of outputs will be operated
 - = \$00 the figure of eight of outputs will not be operated

9.12 MODULE CONNECTION EXAMPLES

In preparation

10. DIGITAL OUTPUT MODULE OR-7451

The OR-7451 module is equipped with 16 relay outputs with make contacts. The module is fitted with a connector allowing the customer to make a choice of several variants selected and ordered separately by the customer (order numbers TXN 102 3x). The connectors are described in the documentation TXV 102 30 or in the Manual for designing TXV 001 08.01.

10.1 BASIC PARAMETERS

Product standard	ČSN EN 61131-2		
Protection class of electrical object ČSN 33 0600	II		
Connection	Removable connector,		
	max. 2,5 mm2 conductor per terminal		
Type of equipment	Built-in		
Coverage (after installation into rack)	IP20 ČSN EN 60529		
Dimensions	137 x 30 x 198 mm		

10.2 OPERATIONAL CONDITIONS

v.			
Class of ambient influence – ČSN 33 2000-3	Normal		
Operating temperatures range	0 ℃ to + 55 ℃		
Permissible temperatures during transport	-25 ℃ to +70 ℃		
Relative humidity	10 % to 95 % without condensation		
Atmospheric pressure	Min. 70 kPa (< 3000 m above see level)		
Degree of pollution - ČSN EN 61131-2	2		
Overvoltage category of installation -	II		
ČSN 33 0420-1			
Working position	Vertical		
Type of operation	Continuous		
Electromagne	tic compatibility		
Emissions - ČSN EN 55022*	Class A		
Immunity	Table 16, ČSN EN 61131-2		
Vibration resistance (sinusoidal vibrations)	10 Hz to 57 Hz amplitude 0,075 mm,		
Fc according to ČSN EN 60068-2-6	57 Hz to 150 Hz acceleration 1G		

* This is a product of Class A. In indoor conditions (i.e. such conditions, where using of radio and TV sets can be supposed in a distance of 10 m from the mentioned equipment), the product can cause radio disturbances. It might be required in such cases that the user takes necessary measures to avoid this.

10.3 ELECTRICAL PARAMETERS

Number of outputs		16	
Number of outputs in the group	4 (in four groups)		
Galvanic isolation from internal circuits	Yes, groups and mutually		
Diagnostics	Yes, signalization of closed contact		
	on module panel		
Common pole		Yes	
Type of outputs		Electromechanical relay,	
		unprotected output	
Type of contact		Make contact	
Switching voltage	Max.	250 V	
	Min.	12 V	
Switching current	Max.	3 A	
	Min.	100 mA	
Short time overload capacity of output	Max.	6 A	
Common pole current	Max.	10 A	
Switch on period of contact	Тур.	5 ms	
Switch off period of contact	Тур.	6 ms	
Contact bounce period	Тур.	1 ms	
Limit values for switching load:		3 A at 30 V DC or 230 V AC	
- for resistance load			
- for inductive load DC13	Max.	3 A at 30 V DC	
- for inductive load AC15	Max.	3 A at 230 V AC	
Switching rate without load	Max.	1200 switchings / min	
Switching rate with nominal load	Max.	6 switchings / min	
Mechanical lifetime	Min.	5 000 000 cycles	
Electric lifetime at max. load:			
- for resistance load	Min.	400 000 cycles 7 000 cycles	
- for inductive load DC13	for inductive load DC13 Min.		
- for inductive load AC15	Min.	100 000 cycles	
Short-circuit protection		External	
Inductive load treatment	External		
	RC member, varistor, diode (DC)		
Insulation voltage among inputs and internal circuit	3750 V AC		
Insulation voltage among groups of inputs among e	1000 V AC		
other	Max.		
Module output loss	3.8 W		
Module input power taken from system source	3,8 W		

10.4 POWER SUPPLY

The module is fed from the power supply source, which is part of the TC700 system assembly.

10.5 CONNECTION

The module is fitted with a connector (order number of connector TXN 102 3x, according to customer's choice). The connection of the connector is

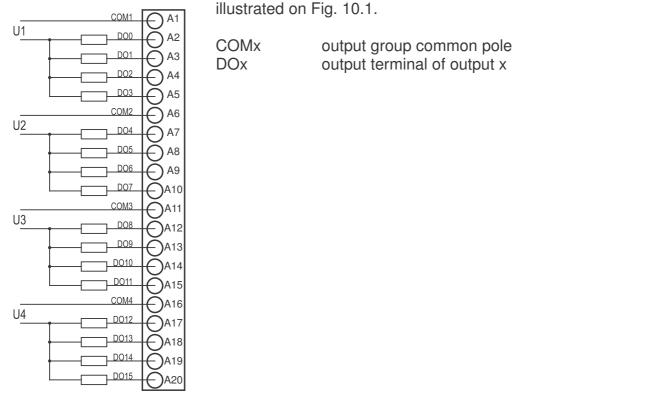


Fig. 10.1 Connection of terminal board of module OR-7451

Detailed information on connection, proper installation procedure, examples of module connection and principles for increasing resistance and reliability can be found in the handbook for designing TXV 001 08.01.

10.6 OPERATION

10.6.1 Module HW configuration

The module is operated, set and diagnosed from the MOSAIC development environment. No setup is made on the module itself.

10.6.2 Putting in operation

After putting the module into the rack and switching power supply on, the module is fully ready for operation and does not require any other settings of its elements.

10.7 DIAGNOSTICS

The basic diagnostic system of the module is part of the standard module software. The diagnostic system becomes active after module power supply is on, and works independently from the user.

10.8 INDICATION

On the front panel of the module, one green indication LED is assigned to each output digital signal. Further, there is a green RUN LED on the front panel. If the LED is on, the module is in the HALT mode, if the RUN LED is flashing, the module is in the RUN mode. Additionally, there is a yellow BLK LED on the front panel and when this is on, blocking of digital outputs is indicated.

OR-7451				
🌑 RUN 🔵 OFF				
DO 0 8				
19				
(2) 10				
3 11				
4 12				
5 13				
6 14				
7 15				
DO 230 V AC REL				

Fig. 10.2 Indication panel of module OR-7451

10.9 MODULE SETUP

For a trouble-free module operation it is necessary to perform its SW setup within the frame of module declaration. The activation of the operation of digital outputs is carried out by figures of eight. Each figure of eight can be enabled or disabled individually. Module setup is carried out within the MOSAIC development environment by means of the dialog given below.

Nastavení modulu OR-7451			×
Zapnutí přenosu bin. výstupů			
🗹 Zapnuto pro 1. osmici			
Zapnuto pro 2. osmici			
🗌 Modul Ize vyjmout za chodu	🗸 ОК	🔀 Zrušit	7 Nápověda 🚽

Fig. 10.3 Module SW setup

Switching on of transmission of digital outputs

By enabling the option Zapnuto pro n. osmici (ON for the n-th figure of eight), transmission of current states of the corresponding figure of eight of outputs from the PLC scratchpad to the module is allowed. If this option is not enabled for a figure of eight of outputs, the relevant values will not be transmitted. The first figure of eight corresponds to the outputs DO0 \div DO7, the second figure of eight corresponds to the outputs DO8 \div DO15.

10.10 TRANSMITTED DATA STRUCTURE

The digital output module OR-7451 operates 16 output digital signals. In the data being transmitted, each output signal is represented by one variable of Boolean type. The structure items of the digital module have symbolic names assigned, beginning with the rack number and position number in the rack. In the column Uplný zápis (Full Write), concrete symbolic name is specified for the given item. If you want to use the data in the user program, you will use either this symbolic name or you will write your symbolic name in the column Alias, that can be used later. Do not use absolute operands in any case, since they can change after a new compilation of the user program. The structure of passed data is obvious from the panel Nastavení V/V (Setting V/V) in the MOSAIC development environment (icon III).

🔆 Nastavení V/V				
-	IC EXP HEX BIN STR 🔢 🛅	1.0		
IEC 💑 💑 💑 DE	C EXP HEX BIN STR 🔢 🛄	1:0		
O RM 0				
1 PW-7903 2 CP-7002	3 OR-7451			
Struktura dat	Úplný zápis	[≪] Alias [≪] Svor	ka [¶] Abs./délka [¶] Hodr	nota
□ DO : TBIN_16DO	r0_p3_D0			
- DOO : BOOL	r0_p3_D0~D00	A2	%Y4.0 0	
- DO1 : BOOL	r0_p3_D0~D01	A3	%Y4.1 0	
- DO2 : BOOL	📑 r0_p3_D0~D02	A4	%Y4.2 0	
- DO3 : BOOL	📑 r0_p3_D0~D03	A5	%Y4.3 0	
-DO4 : BOOL	📑 r0_p3_D0~D04	A7	%Y4.4 0	
- DO5 : BOOL	r0_p3_D0~D05	A8	%Y4.5 0	
	r0_p3_D0~D06	A9	%Y4.6 0	
- DO7 : BOOL	📑 r0_p3_D0~D07	A10	%Y4.7 0	
	r0_p3_D0~D08	A12	%Y5.0 0	
	r0_p3_D0~D09	A13	%Y5.1 0	
-DO10 : BOOL	r0_p3_D0~D010	A14	%Y5.2 0	
- D011 : BOOL	r0_p3_D0~D011	A15	%Y5.3 0	
-D012 : BOOL	r0_p3_D0~D012	A17	%Y5.4 0	
-D013 : BOOL	r0_p3_D0~D013	A18	%Y5.5 0	
-D014 : BOOL	r0_p3_D0~D014	A19	%Y5.6 0	
-D015 : BOOL	r0_p3_D0~D015	A20	%Y5.7 0	

Fig. 10.4 Data structure of digital module OR-7451

The module data structure is generated by the Mosaic program automatically (according to Setup V/V) to file HWconfig.ST.

TYPE				
TBIN_16	D	0	:	STRUCT
DO0	:	В	00)L;
D01	:	В	00)L;
D02	:	В	00)L;
DO3	:	В	00)L;
DO4	:	В	00)L;
D05				
D06	:	В	00)L;
D07	:	В	00)L;
D08	:	В	00)L;
D09	:	В	00)L;
D010		:	BC	OL;
D011		:	BC	OL;
D012		:	BC	OL;
D013		:	BC	OL;
D014		:	BC	OL;
D015		:	BC	OL;
END_STR	U	СТ	;	
END_TYPE				

VAR_GLOBAL r0_p3_D0 AT %Y4 : TBIN_16DO; END_VAR

Variable DO

The value passed in variable DOx corresponds to the state of the output signal of the corresponding output.

10.11 APPENDIX FOR ADVANCED USERS

The structures given below are typically automatically generated by the MOSAIC development environment (into file *.HWC) and it is not recommended to alter them. If the programmer does not use automatic configuration generation, the description below serves as a sample for manual module configuration.

10.11.1 Initialization data structure

The module requires an initialization table, this is represented in the declaration file of the MOSAIC development environment (*.HWC) by the following description:

<pre>#struct _TTS_Head UINT ModulID, USINT Stat0,</pre>	;module heading structure ;module type identification code ;status of data exchange
USINT Stat1	;status of data exchange
<pre>#struct _TTS_OR7451 _TTS_Head Head, USINT[2] EDO</pre>	;module initialization table structure ;heading ;activation of figures of eight of outputs

Example of declaration of initialization table :

Example of declaration of module :

```
#struct TModulE1
                                       ;module declaration structure
         USINT version,
                                      ;description version
                                      ;rack address
         USINT rack,
                                      ;module address in the rack
         USINT address,
         UINT LogAddress,
                                      ;logic address
         UINT LenInputs,
                                      ;length of input data zone
         UINT LenOutputs,
                                      ;length of output data zone
         DINT Denoutputs, ;length of output data zone
DINT OffsetInputs, ;position of input data zone
DINT OffsetOutputs, ;position of output data zone
         UINT InitTable
                                      ; initialization table index
```

#module TModulE1 1, 0, 3, 0, 0, 2, 0, __offset(r0_p3_D0), __indx (_r0_p3_Table)

The meanings of the items of the initialization table:

ModullD - module type identification code, here 7451

STAT0, STAT1 - data exchange status, here 0

EDO
 - activation of operation of the figure of eight of digital outputs
 = \$80 - the figure of eight of outputs will be operated
 = \$00 - the figure of eight of outputs will not be operated

10.12 MODULE CONNECTION EXAMPLES

In preparation

11. DIGITAL OUTPUT MODULE OR-7453

The OR-7453 module is equipped with 8 relay outputs - 4 make and 4 break make contacts. The module is fitted with a connector allowing the customer to make a choice of several variants selected and ordered separately by the customer (order numbers TXN 102 3x). The connectors are described in the documentation TXV 102 30 or in the Manual for designing TXV 001 08.01.

11.1 BASIC PARAMETERS

Product standard	ČSN EN 61131-2
Protection class of electrical object ČSN 33 0600	II
Connection	Removable connector,
	max. 2,5 mm2 conductor per terminal
Type of equipment	Built-in
Coverage (after installation into rack)	IP20 ČSN EN 60529
Dimensions	137 x 30 x 198 mm

11.2 OPERATIONAL CONDITIONS

Class of ambient influence – ČSN 33 2000-3	Normal	
Operating temperatures range	0 °C to + 55 °C	
Permissible temperatures during transport	-25 ℃ to +70 ℃	
Relative humidity	10 % to 95 % without condensation	
Atmospheric pressure	Min. 70 kPa (< 3000 m above see level)	
Degree of pollution - ČSN EN 61131-2	2	
Overvoltage category of installation -		
ČSN 33 0420-1		
Working position	Vertical	
Type of operation	Continuous	
Electromagne	etic compatibility	
Emissions - ČSN EN 55022*	Class A	
Immunity	Table 16, ČSN EN 61131-2	
Vibration resistance (sinusoidal vibrations)	10 Hz to 57 Hz amplitude 0,075 mm,	
Fc according to ČSN EN 60068-2-6	57 Hz to 150 Hz acceleration 1G	

* This is a product of Class A. In indoor conditions (i.e. such conditions, where using of radio and TV sets can be supposed in a distance of 10 m from the mentioned equipment), the product can cause radio disturbances. It might be required in such cases that the user takes necessary measures to avoid this.

11.3 ELECTRICAL PARAMETERS

Number of outputs		8	
Number of outputs in the group	1		
Galvanic isolation from internal circuits		Yes	
Diagnostics		Yes, signalization of closed	
5		contact on module panel	
Common pole		No	
Type of outputs		Electromechanical relay,	
		unprotected output	
Type of contact		4 brake make	
		and 4 make contacts	
Switching voltage	Max.	250 V	
	Min.	12 V	
Switching current	Max.	3 A	
	Min.	100 mA	
Short time overload capacity of output	Max.	6 A	
Switch on period of contact	Тур.	5 ms	
Switch off period of contact	Тур.	6 ms	
Contact bounce period	Тур.	1 ms	
Limit values for switching load:			
- for resistance load	Max.	3 A at 30 V DC or 230 V AC	
- for inductive load DC13	Max.	3 A at 30 V DC	
- for inductive load AC15	Max.	3 A at 230 V AC	
Switching rate without load	Max.	1200 switchings / min	
Switching rate with nominal load	Max.	6 switchings / min	
Mechanical lifetime	Min.	5 000 000 cycles	
Electric lifetime at max. load:			
- for resistance load	Min.	400 000 cycles	
- for inductive load DC13	Min.	7 000 cycles	
- for inductive load AC15	Min.	100 000 cycles	
Short-circuit protection		External	
Inductive load treatment		external	
		RC member, varistor, diode (DC)	
Insulation voltage among inputs and internal circuits		3750 V AC	
Insulation voltage among groups of inputs among each other		1000 V AC	
Module output loss	Max.	2,4 W	
Module input power taken from system source Max.		2,4 W	

11.4 **POWER SUPPLY**

The module is fed from the power supply source, which is part of the TC700 system assembly.

11.5 CONNECTION

The module is fitted with a connector (order number of connector TXN 102 3x, according to customer's choice). The connection of the connector is illustrated on Fig. 11.1.

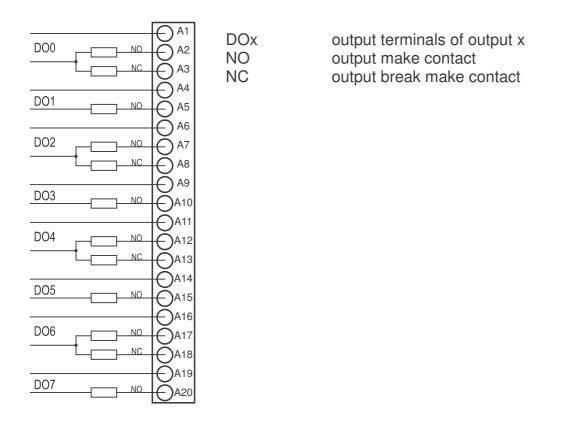


Fig. 11.1 Connection of terminal board of module OR-7453

Detailed information on connection, proper installation procedure, examples of module connection and principles for increasing resistance and reliability can be found in the handbook for designing TXV 001 08.01.

11.6 **OPERATION**

11.6.1 Module HW configuration

The module is operated, set and diagnosed from the MOSAIC development environment. No setup is made on the module itself.

11.6.2 Putting in operation

After putting the module into the rack and switching power supply on, the module is fully ready for operation and does not require any other settings of its elements.

11.7 DIAGNOSTICS

The basic diagnostic system of the module is part of the standard module software. The diagnostic system becomes active after module power supply is on, and works independently from the user.

11.8 INDICATION

On the front panel of the module, one green indication LED is assigned to each output digital signal. Further, there is a green RUN LED on the front panel. If the LED is on, the module is in the HALT mode, if the RUN LED is flashing, the module is in the RUN mode. Additionally, there is a yellow BLK LED on the front panel and when this is on, blocking of digital outputs is indicated.

OR-7453
🛑 RUN 🔵 OFF
DO0 🌑 DT
DO1 🛑
DO2 🌑 DT
DO3 🌑
DO4 🌑 DT
DO5 🛑
DO6 🛑 DT
D07 🌑
DO 230 V AC REL

Fig. 11.2 Indication panel of module OR-7453

11.9 MODULE SETUP

For a trouble-free module operation it is necessary to perform its SW setup within the frame of module declaration. The activation of the operation of digital outputs is carried out by figures of eight. Each figure of eight can be enabled or disabled individually. Module setup is carried out within the MOSAIC development environment by means of the dialog given below.

Nastavení modulu OR-7453		×
Zapnutí přenosu bin. výstupů Zapnuto pro 1. osmici		
🗖 Modul Ize vyjmout za chodu	OK X Zrušit	? Nápověda

Fig. 11.3 Module SW setup

Switching on of transmission of digital outputs

By enabling the option *Zapnuto pro n. osmici* (ON for the n-th figure of eight), transmission of current states of the corresponding figure of eight of outputs from the PLC scratchpad to the module is allowed. If this option is not enabled for a figure of eight of outputs, the relevant values will not be transmitted. The first figure of eight corresponds to the outputs DO0 ÷ DO7.

11.10 TRANSMITTED DATA STRUCTURE

The digital output module OR-7453 operates 8 output digital signals. In the data being transmitted, each output signal is represented by one variable of Boolean type. The structure items of the digital module have symbolic names assigned, beginning with the rack number and position number in the rack. In the column Uplný zápis (Full Write), concrete symbolic name is specified for the given item. If you want to use the data in the user program, you will use either this symbolic name or you will write your symbolic name in the column Alias, that can be used later. Do not use absolute operands in any case, since they can change after a new compilation of the user program. The structure of passed data is obvious from the panel Nastavení V/V (Setting V/V) in the MOSAIC development environment (icon III).

🛟 Nastavení V/V			
IEC 💑 💑 💑 DEC	EXP HEX BIN STR 🔢 🛅	1:0	
O RM 0			
1 PW-7903 2 CP-7002	3 OR-7453		
Struktura dat	Úplný zápis	▲Alias ▲ Svorka ▲	Abs./délka¶ Hodnota
⊡DO : TBIN_8DO	r0_p3_D0		
-DOO : BOOL	r0_p3_D0~D00	A1 (NO) / A2	%Y4.0 0
-DO1 : BOOL	10_p3_D0~D01	A5 (NO)	%Y4.1 0
-DO2 : BOOL	📑 r0_p3_D0~D02	A7 (NO) / A2	%Y4.2 0
-DO3 : BOOL	🕒 г0_p3_D0~D03	A10 (NO)	%Y4.3 0
-DO4 : BOOL	🕒 г0_p3_D0~D04	A12 (NO) / A1	%Y4.4 0
-DO5 : BOOL	🕒 r0_p3_D0~D05	A15 (NO)	%Y4.5 0
-DO6 : BOOL	📑 r0_p3_D0~D06	A17 (NO) / A1	%Y4.6 0
D07 : BOOL	r0_p3_D0~D07	A20 (NO)	%Y4.7 0

Fig. 11.4 Data structure of digital module OR-7453

The module data structure is generated by the Mosaic program automatically (according to Setup V/V) to file HWconfig.ST.

```
TYPE
```

TBIN_8D	00	: STRUCT
DOO	:	BOOL;
DO1	:	BOOL;
DO2	:	BOOL;
DO3	:	BOOL;
DO4	:	BOOL;
D05	:	BOOL;
D06	:	BOOL;
D07	:	BOOL;
END_STR	U	СТ;
END_TYPE		

VAR_GLOBAL		
r0_p3_D0	AT %Y4	: TBIN_8DO;
END VAR		

Variable DO

The value passed in variable DOx corresponds to the state of the output signal of the corresponding output.

11.11 APPENDIX FOR ADVANCED USERS

The structures given below are typically automatically generated by the MOSAIC development environment (into file *.HWC) and it is not recommended to alter them. If the programmer does not use automatic configuration generation, the description below serves as a sample for manual module configuration.

11.11.1 Initialization data structure

The module requires an initialization table, this is represented in the declaration file of the MOSAIC development environment (*.HWC) by the following description:

;module heading structure
;module type identification code
;status of data exchange
;status of data exchange
;module initialization table structure
;heading
;activation of figures of eight of outputs

Example of declaration of initialization table :

<pre>#table _TTS</pre>	_OR7453 _r0_p3_Tal	ble = 7453,\$00,\$00), ;table heading
		\$80	;activation of figures
			; of eight of outputs

Example of declaration of module :

#struct	TModulE1		;module declaration structure
	USINT	version,	;description version
	USINT	rack,	;rack address
	USINT	address,	;module address in the rack
	UINT	LogAddress,	;logic address
	UINT	LenInputs,	;length of input data zone
	UINT	LenOutputs,	;length of output data zone
	DINT	OffsetInputs,	;position of input data zone
	DINT	OffsetOutputs,	;position of output data zone
	UINT	InitTable	; initialization table index
#module	TModu	lE1 1, 0, 3, 0, 0,	1, 0,offset(r0p3DO),

__indx (_r0_p3_Table)

The meanings of the items of the initialization table:

ModulID - module type identification code, here 7453

STAT0, STAT1 - data exchange status, here 0

EDO - activation of operation of the figure of eight of digital outputs
 = \$80 - the figure of eight of outputs will be operated
 = \$00 - the figure of eight of outputs will not be operated

MODULE CONNECTION EXAMPLES

Example 1 The following actuators are connected to the module:

- 1 three-point controlled actuating mechanism

- 1 magnetic valve
- 1 external relay

The digital output module OR-7453 has 8 relay outputs. The outputs are realized alternately by break make and make contacts (outputs 0, 2, 4 and 6 break make contacts, outputs 1, 3, 5 and 7 are make contacts).

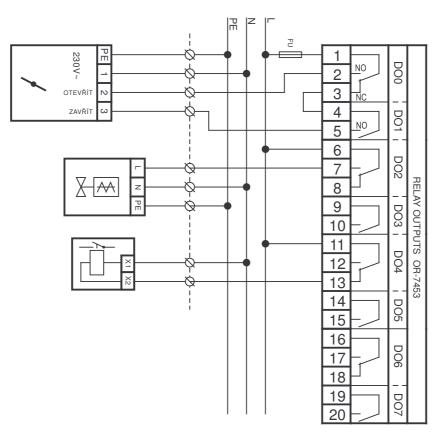


Fig. 11.5 Connector of module OR-7453 (connection example)

Notes:

- 1. Outputs DO0 and DO1 represent three-point control with blocking of switching of both outputs at the same time.
- The insulation among the outputs is a working insulation thus it is not possible to control the low voltage 230 V circuits by one module output and the SELV circuits by another output.

<u>Notes</u>

Objednávky a informace: Teco a. s. Havlíčkova 260, 280 58 Kolín 4, tel. 321 737 611, fax 321 737 633

TXV 004 20.01

The manufacturer reserves the right to make modifications and/or changes to the documentation. The latest version is available on the Internet at www.tecomat.cz